毒蘑菇的二元预测
您提供了很多关于不同二元分类任务的资源和链接,看起来这些都是Kaggle竞赛中的参考资料和高分解决方案。为了帮助您更好地利用这些资源,这里是一些关键点的总结:
Playground Season 4 Episode 8
- 主要关注的竞赛: 使用银行流失数据集进行二元分类。
- 数据集: 已经重新组织并发布供参考。
- 热门解决方案:
-
- LightGBM 和 CatBoost 模型 (得分 0.8945)。
- XGBoost 和随机森林模型。
- 神经网络分类模型。
其他相关的竞赛和资源
- 使用生物信号对吸烟者状况进行二元预测
-
- EDA 和特征工程。
- XGBoost 模型。
- 使用软件缺陷数据集进行二元分类
-
- EDA 和建模。
- 机器故障的二元分类
-
- EDA, 集成学习, ML pipeline, SHAP 分析。
- 使用表格肾结石预测数据集进行二元分类
-
- 多种模型对比。
- 特色竞赛
-
- 美国运通 - 违约预测
-
-
- 特征工程和LightGBM模型。
-
-
- 房屋信贷违约风险
-
-
- 完整的EDA和特征重要性分析。
-
竞争指标 - Mathews 相关性系数
- 定义: 衡量二元分类器输出质量的度量。
- 资源:
-
- Wikipedia 关于 Phi 系数的页面。
- Voxco 博客关于 Matthews 相关性系数的文章。
- 一篇关于 Matthews 相关性系数在生物数据挖掘中的应用的论文。
- Scikit-learn 文档中关于 Matthews 相关性系数的说明。
希望这些信息能够帮助您更有效地开始学习和参与这些竞赛。如果您有具体的问题或者需要针对某个特定部分的帮助,请告诉我!
# 加载训练数据
train_data = pd.read_csv('train.csv')
# 显示前几行数据以了解数据结构
print(train_data.head())
# 查看数据的基本信息
print(train_data.info())
步骤 2: 数据探索与可视化
在这一步中,我们将对数据进行更深入的探索,并使用可视化工具来更好地理解数据的分布和特征之间的关系。
# 统计每种类型的蘑菇数量
print(train_data['class'].value_counts())
# 可视化不同类型的蘑菇数量
plt.figure(figsize=(8, 6))
sns.countplot(x='class', data=train_data)
plt.title('Distribution of Mushroom Classes')
plt.show()
# 查看各特征与目标变量之间的关系
fig, axs = plt.subplots(5, 5, figsize=(20, 20))
axs = axs.flatten()
for i, col in enumerate(train_data.columns[1:]):
sns.countplot(x=col, hue='class', data=train_data, ax=axs[i])
axs[i].set_title(f'Distribution of {col} by Class')
plt.tight_layout()
plt.show()
步骤 3: 数据预处理
接下来,我们将对数据进行预处理,包括特征编码和其他必要的变换。
# 对类别特征进行编码
label_encoder = LabelEncoder()
# 遍历所有非数字特征
for col in train_data.select_dtypes(include=['object']).columns:
train_data[col] = label_encoder.fit_transform(train_data[col])
# 查看编码后的数据
print(train_data.head())
步骤 4: 构建模型
在这一步中,我们将构建 LightGBM 和 CatBoost 模型,并进行训练。
# 分割数据集
X = train_data.drop('class', axis=1)
y = train_data['class']
# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义 LightGBM 模型
lgb_params = {
'objective': 'binary',
'metric': 'auc',
'verbosity': -1,
'boosting_type': 'gbdt',
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'lambda_l1': 0.1,
'lambda_l2': 0.1
}
# 创建 LightGBM 数据集
lgb_train = lgb.Dataset(X_train, y_train)
lgb_val = lgb.Dataset(X_val, y_val, reference=lgb_train)
# 训练 LightGBM 模型
lgb_model = lgb.train(lgb_params, lgb_train, num_boost_round=1000, valid_sets=[lgb_val], early_stopping_rounds=100)
# 定义 CatBoost 模型
cb_params = {
'loss_function': 'Logloss',
'eval_metric': 'AUC',
'learning_rate': 0.05,
'depth': 6,
'l2_leaf_reg': 10,
'bootstrap_type': 'Bayesian',
'bagging_temperature': 0.2,
'random_seed': 42,
'allow_writing_files': False
}
# 创建 CatBoost 数据集
cb_train = Pool(X_train, y_train)
cb_val = Pool(X_val, y_val)
# 训练 CatBoost 模型
cb_model = CatBoostClassifier(**cb_params)
cb_model.fit(X_train, y_train, eval_set=(X_val, y_val), use_best_model=True, verbose=False)
步骤 5: 测试数据预测
最后,我们将使用训练好的模型对测试数据进行预测,并整理预测结果以符合 Kaggle 提交的要求。
# 加载测试数据
test_data = pd.read_csv('test.csv')
# 对测试数据进行相同的特征编码
for col in test_data.select_dtypes(include=['object']).columns:
test_data[col] = label_encoder.transform(test_data[col])
# 获取测试数据的 ID
test_ids = test_data['id']
# 删除不需要的列
test_features = test_data.drop('id', axis=1)
# 使用模型进行预测
predictions_lgb = lgb_model.predict(test_features, num_iteration=lgb_model.best_iteration)
predictions_cb = cb_model.predict(test_features)
# 将预测结果转换为二进制形式
predictions_lgb_binary = (predictions_lgb > 0.5).astype(int)
predictions_cb_binary = (predictions_cb > 0.5).astype(int)
# 整理预测结果
submission_df = pd.DataFrame({'id': test_ids, 'class': predictions_lgb_binary})
submission_df['class'] = submission_df['class'].map({1: 'p', 0: 'e'})
# 保存预测结果
submission_df.to_csv('submission.csv', index=False)
好的,现在我将为你提供一个完整的代码示例来解决“毒蘑菇的二元预测”问题。我们将使用 LightGBM 和 CatBoost 这两个模型来进行预测,并遵循之前讨论过的步骤。
首先,我们需要安装必要的库。如果你还没有安装它们,可以使用以下命令安装:
pip install pandas numpy scikit-learn lightgbm catboost matplotlib seaborn plotly
下面是完整的代码示例:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import lightgbm as lgb
from catboost import CatBoostClassifier
from sklearn.metrics import matthews_corrcoef
# 忽略警告
import warnings
warnings.filterwarnings('ignore')
# 加载数据
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
# 数据预处理
def preprocess_data(data):
# 对类别特征进行编码
label_encoder = LabelEncoder()
for col in data.select_dtypes(include=['object']).columns:
data[col] = label_encoder.fit_transform(data[col])
return data
# 预处理训练数据
train_data = preprocess_data(train_data)
# 预处理测试数据
test_data = preprocess_data(test_data)
# 数据分割
X = train_data.drop('class', axis=1)
y = train_data['class']
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义 LightGBM 模型
lgb_params = {
'objective': 'binary',
'metric': 'binary_logloss',
'verbosity': -1,
'boosting_type': 'gbdt',
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'lambda_l1': 0.1,
'lambda_l2': 0.1
}
# 创建 LightGBM 数据集
lgb_train = lgb.Dataset(X_train, y_train)
lgb_val = lgb.Dataset(X_val, y_val, reference=lgb_train)
# 训练 LightGBM 模型
lgb_model = lgb.train(lgb_params, lgb_train, num_boost_round=1000, valid_sets=[lgb_val], early_stopping_rounds=100)
# 定义 CatBoost 模型
cb_params = {
'loss_function': 'Logloss',
'eval_metric': 'AUC',
'learning_rate': 0.05,
'depth': 6,
'l2_leaf_reg': 10,
'bootstrap_type': 'Bayesian',
'bagging_temperature': 0.2,
'random_seed': 42,
'allow_writing_files': False
}
# 训练 CatBoost 模型
cb_model = CatBoostClassifier(**cb_params)
cb_model.fit(X_train, y_train, eval_set=(X_val, y_val), use_best_model=True, verbose=False)
# 测试数据预测
test_ids = test_data['id']
test_features = test_data.drop('id', axis=1)
# 使用 LightGBM 进行预测
predictions_lgb = lgb_model.predict(test_features, num_iteration=lgb_model.best_iteration)
predictions_lgb_binary = (predictions_lgb > 0.5).astype(int)
# 使用 CatBoost 进行预测
predictions_cb = cb_model.predict(test_features)
predictions_cb_binary = (predictions_cb > 0.5).astype(int)
# 评估模型
mcc_lgb = matthews_corrcoef(y_val, lgb_model.predict(X_val, num_iteration=lgb_model.best_iteration) > 0.5)
mcc_cb = matthews_corrcoef(y_val, cb_model.predict(X_val) > 0.5)
print("LightGBM Matthews Correlation Coefficient: ", mcc_lgb)
print("CatBoost Matthews Correlation Coefficient: ", mcc_cb)
# 整理预测结果
submission_df = pd.DataFrame({'id': test_ids, 'class': predictions_lgb_binary})
submission_df['class'] = submission_df['class'].map({1: 'p', 0: 'e'})
# 保存预测结果
submission_df.to_csv('submission.csv', index=Fal