想象一下,你开了一家大型的、现代化的“数据处理工厂”,而 Flink 就是这家工厂的总操作系统。你的目标是高效、准确地处理源源不断送来的数据原料。为了让工厂运转起来,你需要三个关键角色:
- 客户 (Client):你自己,或者说你的代码提交工具。
- 项目经理 (JobManager):工厂的总指挥,负责管理和调度。
- 工人 (TaskManager):真正干活的员工,负责执行具体的任务。
这三个角色,就精确地对应了 Flink 的三大核心组件:Client、JobManager 和 TaskManager。
(图片来源: Apache Flink 官网)
1. 客户 (Client):运筹帷幄的“幕后老板”
首先,我们来看看 Client。Client 不是集群的一部分,它更像是一个“幕后老板”或者“项目发起人”。它的主要职责是准备和提交任务。
作为工厂老板,接到了一个大订单(一个 Flink 作业)。你不会亲自下车间干活,而是会做以下几件事:
- 制定蓝图:编写你的 Flink 代码,定义好数据从哪里来 (Source),经过哪些处理步骤 (Transformation),最终到哪里去 (Sink)。
- 优化方案:Client 会将你的代码转换成一个叫做“数据流图 (Dataflow Graph)”的执行计划。这就像是把你的生产流程图纸化、最优化,确保每个环节都清晰明了。
- 提交给项目经理:最后,Client 将这份优化后的执行计划和所有需要的资源(比如你的代码 JAR 包)一同提交给 JobManager,并对他说:“这是我们的新任务,交给你了!”
一旦任务提交成功,Client 的使命就基本完成了。你可以选择离开(分离模式),让任务在集群上独立运行;也可以选择留下,等待并接收任务的最终执行结果(附加模式)。
代码示例:
我们平时在 IDEA(开发工具)里点击“运行”一个 Flink 程序,或者在服务器上通过 flink run
命令提交一个作业,这个“点击运行”或“执行命令”的动作,就是 Client 在发挥作用。
# 假设我们打包好了一个名为 FlinkWordCount.jar 的项目
# ./bin/flink run 命令就是 Client 的入口
# 它负责解析参数,将 JAR 包和执行计划提交给 JobManager
./bin/flink run -c com.example.MyStreamingJob ./FlinkWordCount.jar
在上面的命令中,flink run
就是在扮演 Client 的角色。它负责启动一个 JVM 进程,解析你的代码,生成数据流图,然后将其发送给远端的 JobManager。
小知识:
提交的命令参数丰富多样,在实际使用时可以查阅手册,根据具体的业务场景配置合适的参数。
2. 项目经理 (JobManager):集群的“最强大脑”
JobManager 是整个 Flink 集群的协调者和管理者,是名副其实的“最强大脑”。它负责接收来自 Client 的任务,并像一位经验丰富的项目经理一样,调度和管理整个作业的执行。
通俗理解:
项目经理 (JobManager) 从老板 (Client) 手里拿到了生产计划(数据流图),他会立即开始工作:
- 资源评估与分配:他会检查工厂里有多少空闲的工人 (
TaskManager
) 和可用的设备 (Task Slot
)。然后,他会根据生产计划的复杂程度,决定需要多少工人,并给他们分配具体的任务。这个过程叫做“任务调度
”。 - 发布指令:他会对每个被选中的工人 (TaskManager) 说:“你,负责数据清洗;你,负责数据聚合……” 他会将一个个具体的“子任务 (
SubTask
)”分发下去。 - 进度监控:在整个生产过程中,项目经理会持续监控每个工人的工作状态。如果某个工人“生病”了(
节点故障
),他会立刻发现,并尝试将任务重新分配给其他健康的工人,以确保整个生产流程的稳定性和容错性。这个过程叫做“故障恢复
”。 - 协调快照:为了防止意外断电导致所有工作白干,他会定期命令所有工人:“大家停一下,记录下你们手头的工作进度!” 这个动作就是 Flink 的检查点 (
Checkpoint
) 机制(),用于保证数据的一致性和Exactly-Once语义。
在一个高可用的 Flink 集群中,通常会有多个 JobManager,一个担任“总指挥 (Leader)”,其他则处于“待命 (Standby)”状态。一旦总指挥出现意外,待命的 JobManager 会立刻接管,保证工厂管理工作不中断。
小知识:
从Flink 1.11 (2020年7月发布) 开始,引入了 非对齐 Checkpoint (Unaligned Checkpoint, UAC),可以在 barrier 到达时直接带上未处理的数据 buffer 一起写入 checkpoint,从而避免了任务阻断。
3. 工人 (TaskManager):踏实肯干的“执行单元”
TaskManager 是 Flink 集群中的工作节点,是真正执行数据处理任务的“工人”。集群中有多少个 TaskManager,就意味着有多少个工人。
工人 (TaskManager) 是工厂的核心生产力。他们的特点是:
- 拥有资源:每个工人都有自己的一块“工作台”,上面有固定数量的“工具槽 (Task Slot)”。这些工具槽代表了固定的计算资源(如内存、CPU)。一个工人可以同时处理多个不同的任务,只要他的工具槽没被占满。
- 听从指挥:他们不关心整个生产计划的全貌,只专注于 JobManager 分配给自己的那一部分具体任务。他们从上游任务接收数据,处理完毕后,再发送给下游任务。
- 勤奋汇报:他们会定期向 JobManager 汇报自己的心跳(表示自己还活着)和任务执行的状态。
多个 TaskManager 之间通过网络进行数据交换,这个过程在 Flink 中被称为“数据混洗 (Shuffle)”。这就像工厂里不同工序的工人之间通过传送带传递半成品一样。
总结:一场完美的团队合作
现在,让我们把这三个角色串起来,回顾一下 Flink 作业的完整生命周期:
- 你 (Client) 在你的开发电脑上编写代码,然后通过
flink run
命令提交作业。 - Client 将代码编译成“数据流图”,然后将其和相关资源发送给集群的“大脑”——JobManager。
- JobManager 收到任务后,分析执行计划,并向集群中空闲的“工人”——TaskManager 分配具体的子任务。
- TaskManager 们从 JobManager 处领到任务指令和所需资源,开始埋头干活,在各自的“工具槽 (Slot)”中处理数据。处理过程中,它们之间会通过网络交换数据。
- 在整个过程中,JobManager 持续监控所有 TaskManager 的状态,确保作业稳定运行,并在出现问题时进行恢复。
通过 Client -> JobManager -> TaskManager 这样一套清晰、高效的协作模式,Flink 实现了强大的分布式计算能力。Client 负责“出谋划策”,JobManager 负责“统筹全局”,TaskManager 负责“落地执行”,三者各司其职,共同上演了一场数据处理的“权力的游戏”。