面试算法 牛客题目 寻找峰值

本文介绍了一种在数组中寻找峰值元素的方法,峰值元素定义为其值严格大于左右相邻值的元素。文中提供了两种算法:暴力算法和二分查找算法,并通过C++代码实现了这两种算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.题目:  寻找峰值
描述
给定一个长度为n的数组nums,请你找到峰值并返回其索引。数组可能包含多个峰值,
在这种情况下,返回任何一个所在位置即可。
1.峰值元素是指其值严格大于左右相邻值的元素。严格大于即不能有等于
2.假设 nums[-1] = nums[n] = -\infty?∞
3.对于所有有效的 i 都有 nums[i] != nums[i + 1]
4.你可以使用O(logN)的时间复杂度实现此问题吗?

 


2.算法: 

1.暴力算法

2.二分算法


3.算法思路  

处于递增数列 就含有峰值


4.代码:

/*************************************************
作者:She001
时间:2022/10/9
题目:  寻找峰值
描述
给定一个长度为n的数组nums,请你找到峰值并返回其索引。数组可能包含多个峰值,
在这种情况下,返回任何一个所在位置即可。
1.峰值元素是指其值严格大于左右相邻值的元素。严格大于即不能有等于
2.假设 nums[-1] = nums[n] = -\infty?∞
3.对于所有有效的 i 都有 nums[i] != nums[i + 1]
4.你可以使用O(logN)的时间复杂度实现此问题吗?

***************************************************/
//算法:
//1.暴力算法:
//2.二分查找 



#include<bits/stdc++.h>
using namespace std;

//二分查找   中间查找峰值  假如中间的mid 的值 是 是处于递增 数列  那么这里含有 峰值    
//假如mid 处于   递减数列 那么没有 峰值 
int fangfa_1(vector<int>&q)//动态数组q 引用  
{
	int left =0;
	int right=q.size() -1;//右边数组最大的位置
	while(left<right)
	{
		int mid=(left + right)/2;
		//右边是往下的,不一定有峰值
		if(q[mid]>q[mid+1])
		{
			right=mid;	
		}	
		//右边往上 ,一定能找到峰值 
		else
		{
			left=mid+1;
		}
	}
	return right; 

}

//暴力算法
//思路: 查找第一个 峰值   直接冲第一个元素开始遍历  一直递增,遇到递减  就可以  判定为峰值
int fengzhi(int num[],const int a,const int n)
{
	for(int i=a;i<n-1;i++)
	{
		if(num[i]>num[i+1])
		{
			return i;
		}
	}
	return -1;
}

int fangfa_2(int num[],const int n)//num 数组  n 数组元素个数 
{
	if(n<=1)
	{
		return -1;
	}
	for(int i=0;i<n;i++)
	{
		if(num[i]<num[i+1])
		{
			return  fengzhi(num,i,n);	
		}	
	} 


}
int main()
{
	vector<int>q;//创建一个动态数组  , 一维数组 
	q.insert(q.end(),1);//在动态数组里面添加元素  添加的方法还有  q.push_back(int a) 直接在尾部添加元素   
	q.insert(q.end(),2);
	q.insert(q.end(),3);
	q.insert(q.end(),4);
	q.insert(q.end(),3);
	q.insert(q.end(),2);
	q.insert(q.end(),1);
	q.insert(q.end(),5);
	q.insert(q.end(),6);
	q.insert(q.end(),7);
	q.insert(q.end(),8);
	q.insert(q.end(),4);
	q.insert(q.end(),3);
	
	int b=fangfa_1(q);
	cout<<"b= "<<b<<endl;	
	
	
	int num[10]={1,2,3,4,3,2,1,6,8,7};
	int a=fangfa_2(num,10);
	cout<<"a= "<<a<<endl; 

	 	
	return 	0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值