Pointnet++论文笔记

本文深入解读PointNet++论文,重点介绍了其分层结构、多尺度分组(MSG)、多分辨率分组(MRG)以及点特征传播在不均匀采样点集上的鲁棒特征学习,旨在提升点云处理的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要介绍pointnet++中Method这部分的内容翻译和一些自己的理解,有不当之处欢迎指出。

We first review PointNet and then introduce a basic extension of PointNet with hierarchical structure. Finally, we propose our PointNet++ that is able to robustly learn features even in non-uniformly sampled point sets.

在这里插入图片描述

Review of PointNet: A Universal Continuous Set Function Approximator

给定一个无序的点集 x 1 , x 2 , . . . , x n {x_1,x_2,...,x_n} x1,x2,...,xn,能够定义一个函数 f : χ → R f:\chi \to R f:χR使得点集转变为一个向量:
f ( x 1 , x 2 , . . . , x n ) = γ ( M A X i = 1 , . . . , n h ( x i ) f(x_1,x_2,...,x_n) = \gamma(MAX_{i=1,...,n}{h(x_i)} f(x1,x2,...,xn)=γ(MAXi=1,...,nh(xi)

γ \gamma γ h h h常为多层感知器网络。
公式中的集合函数 f f f对于输入点的排列具有不变性,并且可以任意近似任何连续集函数。注意, h h h的响应可以解释为一个点的空间编码。

但是,pointnet缺乏捕捉不同尺度的局部环境的能力,所以进一步的提出了下面内容。

Hierarchical Point Set Feature Learning

虽然PointNet使用单个最大池化操作来聚合整个点集,但新架构构建了一个点的分层分组,并逐步抽象出更大的局部区域。

这种层次结构由许多集合抽象层次组成,如图所示。在每个级别,处理和抽象一组点以产生具有较少元素的新集合。集合抽象级别由三个关键层组成:采样层,分组层和PointNet层。采样层从输入点中选择一组点,这些点定义了局部区域的质心。然后,分组层通过在质心周围找到“相邻”点来构造局部区域集。PointNet层使用迷你PointNet将局部区域模式编码为特征向量。

一个set abstraction层的输入是 N ∗ ( d + C ) N*(d+C) N(d+C)的矩阵,其中N是输入点的数量,d是坐标。C是点的特征。输出的一个 N ′ ∗ ( d + C ′ ) N'*(d+C')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值