基于光学导航系统,矩阵变换和3D-2D配准研究

本文探讨了手术导航任务中的3D-2D配准数学框架,详细阐述了如何通过校准矩阵将2D超声图像数据变换到3D世界坐标系,并进行3DCT与3D超声图像的配准。关键步骤包括利用标准体模校准导航系统,识别超声图像特征点,以及通过迭代优化使数据匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.   手术导航任务中,3D-2D配准的数学框架


2.   框架分析

三维实时影响导航的理解,完全考虑刚体的情况下:

1. 利用标准体模对导航系统进行校准。此处的校准是指得到上文中提到的校准矩阵,即把2维超声数据从图像坐标系变换到传感器坐标系下。

2. 术前采集得到CT数据,经三维重建可以得到3DCT图像坐标系下的三维立体结构。

3. 术中实时采集2D超声图像,利用校准矩阵和跟踪信息,将图像信息变换到世界坐标系下。此时我们应该明白,世界坐标系是指手术室所在的坐标系统;同时,术中采集得到2D超声图像也变换到3D世界坐标系中。

4.进行3DCT数据与3D世界坐标系中超声图像数据的3D-3D配准,求出配准参数。

3.校准矩阵求解

       在进行影像导航的介入手术之前,我们必须首先获得导航系统的校准矩阵,参考前人的工作,多采用标准体模进行导航系统校准。其数学表达:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值