题目描述
给你n根火柴棍,你可以拼出多少个形如“A+B=CA+B=C”的等式?等式中的AA、BB、CC是用火柴棍拼出的整数(若该数非零,则最高位不能是00)。用火柴棍拼数字0-90−9的拼法如图所示:
注意:
加号与等号各自需要两根火柴棍
如果A≠BA≠B,则A+B=CA+B=C与B+A=CB+A=C视为不同的等式(A,B,C>=0A,B,C>=0)
nn根火柴棍必须全部用上
输入输出格式
输入格式:
一个整数n(n<=24)n(n<=24)。
输出格式:
一个整数,能拼成的不同等式的数目。
输入输出样例
输入样例#1: 复制
14
输出样例#1: 复制
2
输入样例#2: 复制
18
输出样例#2: 复制
9
说明
【输入输出样例1解释】
22个等式为0+1=10+1=1和1+0=11+0=1。
【输入输出样例2解释】
99个等式为:
0+4=4
0+11=11
1+10=11
2+2=4
2+7=9
4+0=4
7+2=9
10+1=11
11+0=11
代码:#include
#include
#include
using namespace std;
int sum(int x)
{
int s = 0;
int f[10] = { 6,2,5,5,4,5,6,3,7,6 };
while (x / 10 != 0)
{
s += f[x % 10];
x = x / 10;
}
s += f[x];
return s;
}
int main()
{
int a, b, c, n, t = 0;
while (scanf("%d", &n) == 1)
{
for (a = 0; a <= 1005; a++)
for (b = 0; b <= 1005; b++)
{
c = a + b;
if (sum(a) + sum(b) + sum© == n - 4)
t++;
}
cout << t<<endl;
t = 0;
}
return 0;
}
。。。暴力搜吧,让a+b=c在一个个将使用的火柴数加起来与n对比
模板:for (a = 0; a <= 1005; a++)
for (b = 0; b <= 1005; b++)
{
c = a + b;
if (sum(a) + sum(b) + sum© == n - 4)
t++;
}
这个两层的dot循环中夹杂着一个递归sum,计算每一次要用的火柴数。
。。。特意提醒。。a或者b或者c都可能不止一位数。。。