【题解】SP3693 KGSS - Maximum Sum

原题传送门


思路分析

线段树。

这道题让我们进行两种操作,分别是单点修改和区间查询,结合数据范围,很明显是一道线段树。

区间里最大的 A i + A j A_i+A_j Ai+Aj,其实就是求区间里的最大值和次大值,我们用线段树维护最大值和次大值。

建树

void build(int now,int tl,int tr){
	if(tl==tr){
		tmax[now]=a[tl];
		tnxt[now]=-inf;//区间里只有 a[now],赋值成最小值
	}else{
		int mid=(tl+tr)/2;
		build(2*now,tl,mid);
		build(2*now+1,mid+1,tr);
		tmax[now]=max(tmax[2*now],tmax[2*now+1]);
		tnxt[now]=max(min(tmax[2*now],tmax[2*now+1]),max(tnxt[2*now],tnxt[2*now+1]));//如下
	}
}

我们定义 t m a x n o w tmax_{now} tmaxnow t n x t n o w tnxt_{now} tnxtnow 表示区间最大值和次大值,其中, t n x t n o w tnxt_{now} tnxtnow 这个算式,第一个 min ⁡ \min min 里面因为 t m a x n o w tmax_{now} tmaxnow 取的是两个中的较大的一个,所以改为求 min ⁡ \min min

单点修改

void update(int now,int tl,int tr,int pos,int x){//将第 pos 个数改为 x
	if(tl==tr){
		tmax[now]=x;//修改
	}else{
		int mid=(tl+tr)/2;
		if(pos<=mid){//找第 pos 个数,看是在哪个子树里
			update(2*now,tl,mid,pos,x);
		}else{
			update(2*now+1,mid+1,tr,pos,x);
		}
		tmax[now]=max(tmax[2*now],tmax[2*now+1]);
		tnxt[now]=max(min(tmax[2*now],tmax[2*now+1]),max(tnxt[2*now],tnxt[2*now+1]));//同上
	}
}

线段树的单点修改,是先通过类似二分的方法找到需要修改的数并进行修改,再回溯更新祖先的最大值和次大值,其中,更新与建树中的相同。

区间查询

void query(int now,int tl,int tr,int l,int r){//分别表示为:当前节点编号,目前的区间是 (tl,tr),要查询 (l,r)
	if(tl>=l&&tr<=r){
		ans2=max(min(ans1,tmax[now]),max(ans2,tnxt[now]));
		ans1=max(ans1,tmax[now]);//更新最大值和次大值
	}else{
		int mid=(tl+tr)/2;
		if(l<=mid){//左子树包含我需要的
			query(2*now,tl,mid,l,r);
		}
		if(r>mid){//右子树包含我需要的
			query(2*now+1,mid+1,tr,l,r);
		}
	}
}

线段树的区间查询,也是通过类似二分的方法,判断当前子树里是否包含我需要的 ( l , r ) (l,r) (l,r) 区间的一部分,有则递归,否则就不递归进入,最后返回答案。


将以上代码合起来,就是最终答案了,单次修改和查询的时间复杂度应该是 O ( log ⁡ n ) O(\log n) O(logn)

code \texttt{code} code

/*Written by smx*/
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define QAQ cout<<"QAQ";
const int MAXN=1e5+5,inf=1e18,mod=1e9+7;
int a[MAXN],tmax[8*MAXN],tnxt[8*MAXN];
int n;
void build(int now,int tl,int tr){
	if(tl==tr){
		tmax[now]=a[tl];
		tnxt[now]=-inf;
	}else{
		int mid=(tl+tr)/2;
		build(2*now,tl,mid);
		build(2*now+1,mid+1,tr);
		tmax[now]=max(tmax[2*now],tmax[2*now+1]);
		tnxt[now]=max(min(tmax[2*now],tmax[2*now+1]),max(tnxt[2*now],tnxt[2*now+1]));
	}
}
void update(int now,int tl,int tr,int pos,int x){
	if(tl==tr){
		tmax[now]=x;
	}else{
		int mid=(tl+tr)/2;
		if(pos<=mid){
			update(2*now,tl,mid,pos,x);
		}else{
			update(2*now+1,mid+1,tr,pos,x);
		}
		tmax[now]=max(tmax[2*now],tmax[2*now+1]);
		tnxt[now]=max(min(tmax[2*now],tmax[2*now+1]),max(tnxt[2*