
深度学习
文章平均质量分 93
胖墩会武术
不要吃太多,吃饱了撑的一点都没错;
不吃也不行,丢失了追求幸福的欲望;
吃个八层饱,你会发现幸福都很简单。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
PyQt6新手教程(七万字)
PyQt是Python编程语言的一个GUI(图形用户界面)工具包,它允许开发人员使用Python语言创建桌面应用程序。PyQt是基于Qt库的Python封装,Qt是一个流行的C++框架,用于开发跨平台的应用程序。原创 2023-11-01 11:31:35 · 49523 阅读 · 17 评论 -
【深度学习项目实战目录】算法详解 + 项目详解 + 数据集 + 完整源码
主要汇总了深度学习不同领域的实战项目,每个项目都附有详细的算法分析、数据集以及源代码。原创 2023-01-31 10:52:53 · 8627 阅读 · 1 评论 -
三万字硬核详解:yolov1、yolov2、yolov3、yolov4、yolov5、yolov7
Yolo (You Only Look Once) 是目标检测 one-state 的神经网络模型,可以在图像中找出特定物体, 并识别种类和位置。原创 2023-01-08 00:57:12 · 28522 阅读 · 11 评论 -
OpenCV图像处理(全)
备注:以下源码均可运行,不同项目涉及的函数均有详细分析说明。原创 2022-08-30 22:40:07 · 80230 阅读 · 73 评论 -
Pytorch基础(数据处理工具箱 + 神经网络工具箱 + Tensor基础 + Numpy基础)
详细介绍Pytorch的数据处理工具箱、神经网络工具箱、Tensor基础、Numpy基础。PyTorch 是一个由 Facebook 团队于 2017 年发布的深度学习框架,是 Torch 框架在 Python 上的衍生。原创 2022-10-25 01:35:37 · 5948 阅读 · 8 评论 -
【PyTorch项目实战】OpenNMT本地机器翻译框架 —— 支持本地部署和自定义训练
OpenNMT是一个开源的神经机器翻译框架,支持本地部署和自定义模型训练,适用于科研和工业应用。它提供PyTorch和TensorFlow两种实现版本,支持Transformer、LSTM等模型架构,但不提供预训练模型。与Google Translate等云端工具不同,OpenNMT强调模型的可定制性和离线使用。用户可通过Hugging Face获取MarianMT等预训练模型进行本地翻译,或自行训练模型。该工具适合研究人员和企业用户,需要一定的技术基础配置使用环境。原创 2025-08-19 21:24:43 · 409 阅读 · 0 评论 -
【图像处理】小波变换(Wavelet Transform,WT)
小波变换是一种重要的图像多尺度分析工具,能够有效分离图像的时频信息。原创 2025-08-13 18:49:40 · 1160 阅读 · 0 评论 -
Roboflow入门与学习指南 —— 使用流程 + 本地测试
实战演示了调用预训练YOLOv8n模型进行目标检测的完整代码示例,包含环境配置、模型加载、推理和结果可视化步骤,同时记录了各环节耗时情况。原创 2025-08-11 09:41:48 · 857 阅读 · 0 评论 -
「Azure 入门指南」:轻松部署网站与 GPT 应用的云平台
Microsoft Azure(读作:阿-朱-儿):是微软推出的全球云计算平台,就像 " 云上的超级电脑工厂 " ,能让你几分钟内在网上创建服务器、网站、数据库、AI 模型等。原创 2025-07-22 19:13:18 · 920 阅读 · 0 评论 -
大语言模型的后训练阶段(Post-Training)
大模型后训练技术概述 大语言模型的生命周期分为预训练、后训练及推理部署三个阶段。后训练阶段通过五大范式实现模型优化:1)监督微调(SFT)利用标注数据适应特定任务;2)指令调优使模型理解人类指令;3)RLHF结合人类反馈优化输出;4)领域适配增强专业场景能力;5)参数高效微调(PEFT)通过LoRA等方法降低计算成本。这些技术使模型从通用知识库进化为智能助手,广泛应用于对话、医疗、金融等领域。原创 2025-07-21 18:48:14 · 820 阅读 · 0 评论 -
【大模型时代】做研究或深耕CV行业,不仅是埋头写代码,更要抬头看趋势。
计算机视觉(CV)在大模型时代并未失去价值,而是逐步融入"图像+语言+多模态"的AI架构体系。当前市场需要既精通传统图像处理,又掌握大模型融合逻辑的复合型人才。热门方向包括CV工程师、医学影像算法、工业视觉、多模态算法等。原创 2025-07-21 18:42:50 · 1543 阅读 · 0 评论 -
【图像质量评价指标】图像熵(Image Entropy) —— 熵值饱和现象
图像熵是一种基于信息论的度量指标,用于评估图像灰度分布的复杂性和信息含量。原创 2025-07-17 21:37:07 · 1189 阅读 · 0 评论 -
【图像质量评价指标】信噪比(Signal-to-Noise Ratio,SNR)
图像信噪比(SNR)是评价图像质量的关键指标,衡量有用信号与噪声的相对强度。SNR计算公式为信号能量与噪声能量的对数比值,单位为分贝(dB),值越高表示图像质量越好。原创 2025-07-17 21:36:22 · 1084 阅读 · 1 评论 -
图像质量评价(Image Quality Assessment,IQA)
图像质量评价(IQA)是衡量图像在主观感受或客观性能上的量化标准,广泛应用于图像处理任务的效果评估。原创 2025-07-16 23:29:52 · 970 阅读 · 0 评论 -
SSH公钥与私钥详解
公钥和私钥是成对的加密密钥,公钥可公开分发(存放于服务器),私钥需严格保密(用于身份验证)。原创 2025-06-17 09:35:07 · 799 阅读 · 0 评论 -
【图像处理】图像过暗或灰度分布过窄
本文提出了一种基于统计特征与机器学习的图像过暗检测系统,用于自动化检测工业显微成像中的低质量图像。系统采用统计特征(灰度均值、标准差、信息熵、暗像素比例)结合逻辑回归模型,实现高效准确的过暗检测。核心方法包括特征提取、模型训练与离线预测三个模块,支持批量处理和单张图像检测。原创 2025-07-15 18:17:12 · 645 阅读 · 0 评论 -
图像对比滑块(Image Comparison Slider)
图像对比滑块是一种交互式展示工具,通过滑动控件直观对比两张图片的差异。原创 2025-07-09 21:52:07 · 825 阅读 · 0 评论 -
【PyTorch项目实战】VisRAG:基于视觉的多模态文档检索增强生成(文本+图像)
本文介绍了多模态RAG(检索增强生成)框架,它通过整合跨模态数据(文本、音频、图像、视频)来提升信息检索与生成能力。核心流程包括:1)将多模态数据编码为向量;2)使用双塔编码结构检索语义相关片段;3)结合原始查询与检索结果生成准确回答。原创 2025-07-08 21:43:22 · 903 阅读 · 0 评论 -
多模态大模型(从0到1)
多模态大模型(Multimodal Large Model)是指具备大规模参数量与预训练能力,能够同时感知、理解、融合与生成来自多种模态数据(如:视觉模态〔图像/视频〕、语言模态〔文本/语音〕、传感模态〔激光雷达、深度图、红外线等〕)的人工智能模型。原创 2025-06-24 23:01:36 · 915 阅读 · 0 评论 -
【sklearn】K-means、密度聚类、层次聚类、GMM、谱聚类
介绍了聚类的基本概念及其在图像处理中的应用场景,随后详细对比了划分聚类、密度聚类、层次聚类、模型聚类和图聚类五类传统方法的特性与适用条件。原创 2025-06-24 22:40:52 · 952 阅读 · 1 评论 -
【PyTorch项目实战】CycleGAN:无需成对训练样本,支持跨领域图像风格迁移
本文梳理了风格迁移模型的发展脉络与技术特点。原创 2025-06-22 23:01:19 · 803 阅读 · 0 评论 -
OpenAI API调用教程
OpenAI API原创 2025-06-18 21:38:38 · 759 阅读 · 0 评论 -
Black自动格式化工具
本文介绍了Python代码自动规范化的常用工具及使用方法,重点推荐了Black格式化工具。Black采用"无配置"理念,统一处理缩进、空格、换行、引号等格式问题,强调风格一致性。原创 2025-06-17 22:11:02 · 1042 阅读 · 0 评论 -
win32com.client模块 —— Python实现COM自动化控制与数据交互
win32com.client是Windows平台Python实现COM自动化的核心模块,可控制支持COM接口的设备和软件。它支持Office自动化、科研仪器控制、工业设备管理等,但仅限Windows使用。原创 2025-06-04 22:14:16 · 1268 阅读 · 0 评论 -
VSCode远程连接AutoDL服务器
通过Auto平台与VScode搭建远程开发环境,可实现本地代码编辑与远程服务器资源的高效协同。原创 2025-05-25 11:52:41 · 2165 阅读 · 0 评论 -
AutoDL与VSCode开发环境下的Linux命令实用指南
本文总结了在autoDL远程服务器上使用VS Code进行开发的常用Linux和Python命令:文件操作;Python开发;系统管理;文件传输。特别提示:长期开发建议使用conda管理环境,避免混用不同环境管理工具。原创 2025-05-25 11:44:52 · 535 阅读 · 0 评论 -
【PyTorch项目实战】超分RCAN:使用非常深的残差通道注意力网络实现图像超分辨率 —— (自研)解决了RCAN恢复图像的模糊性
RCAN的核心思想是通过构建非常深的卷积神经网络,结合残差中的残差(RIR)结构和通道注意力(CA)机制,自适应地学习更多有用的通道特征。原创 2025-05-11 10:44:56 · 1398 阅读 · 2 评论 -
组织透明化方法(CUBIC)
组织透明化技术以及通过光片荧光显微镜的高分辨率体成像技术,结合适当的荧光标记,能够提供整个器官中感兴趣细胞的全面信息,如细胞类型,形状,状态和分布情况。原创 2025-04-29 01:40:30 · 1466 阅读 · 0 评论 -
获取当前鼠标的坐标(图像 + 屏幕)
pyautogui:是一个GUI自动化工具,可以用程序自动控制鼠标和键盘操作,多平台支持(Windows,OS X,Linux)原创 2025-04-28 01:00:44 · 1183 阅读 · 0 评论 -
16bit转8bit的常见方法(图像归一化)
将16-bit图像转换为8-bit图像是图像处理中的常见操作,目的是将原图像的像素值压缩至0-255范围。这种转换有助于减少存储空间、适应常见显示设备,并压缩动态范围。原创 2025-04-14 22:58:41 · 1384 阅读 · 0 评论 -
【PyTorch项目实战】反卷积(Deconvolution)
(1)卷积(Convolution):是一种通过滑动窗口(卷积核)遍历整个图像,对每个像素进行加权求和的操作。(2) 反卷积(Deconvolution):是卷积的逆运算,旨在通过迭代优化方法从模糊图像中恢复原始图像,减少模糊和失真。原创 2025-04-10 22:21:04 · 948 阅读 · 0 评论 -
Richardson-Lucy (RL) 反卷积算法 —— 通过不断迭代更新图像估计值
Richardson-Lucy(RL)反卷积算法:是一种基于最大似然估计(Maximum Likelihood Estimation, MLE)的图像去卷积方法,常用于去模糊和图像增强。通过不断地更新图像估计值,来最小化模糊图像和恢复图像之间的误差,逐步消除模糊,最终接近真实的原始图像,每次迭代都会根据当前估计的图像来修正下次迭代的结果。原创 2025-04-10 22:18:59 · 1799 阅读 · 1 评论 -
电脑硬件性能:HDD + SSD + CPU + GPU(显卡全景图)
电脑硬件包括CPU、HDD、SSD等,CPU为核心,HDD和SSD为存储设备,SSD速度快但价格高,其他组件有内存、显卡、主板等。原创 2024-10-16 22:47:26 · 2162 阅读 · 0 评论 -
基于核函数的卷积操作 —— 理解卷积原理
核函数(Kernel) 是用于图像处理的一种小型矩阵,通常用于卷积操作,以执行滤波、边缘检测、形态学变换等任务。核函数通过滑动窗口的方式作用于图像的像素区域,并计算加权和,从而实现不同的图像处理效果。原创 2025-03-28 16:08:18 · 851 阅读 · 0 评论 -
去条纹算法 —— 兼容自然图像与荧光图像的频域滤波方法(FFT)
基于FFT(快速傅里叶变换)的去条纹算法是一种常用的图像处理方法,适用于去除图像中的周期性条纹噪声。这种算法在自然图像和荧光图像中都有广泛应用,特别是在荧光显微镜图像中,条纹噪声(如干涉条纹或扫描线噪声)较为常见。原创 2025-03-19 21:23:26 · 1393 阅读 · 0 评论 -
去暗角算法
在物体成像过程中,由于高像素分辨率的需求,采用N倍放大倍率会导致成像尺寸过大,而相机的视野有限,无法一次性捕捉整个物体。为了解决这一问题,可以采用图像切块和图像拼接的方式。然而,这种方法可能会引入光学上的暗角问题。原创 2025-03-19 21:23:03 · 956 阅读 · 1 评论 -
图像拼接(Image Stitching)
图像拼接(Image Stitching):是一项计算机视觉技术,它将多张重叠的图像合并为一张更大、无缝的全景图或广角视图。该技术广泛应用于全景摄影、地图制作、医学影像处理、计算机视觉及增强现实(AR)等领域。原创 2025-03-19 21:21:20 · 1634 阅读 · 0 评论 -
extern “C“:在 C++ 中,声明一个 C 代码函数
在 C++ 中,extern "C" 关键字:用于告诉编译器按照 C 语言的命名规则 对函数进行编译和链接,,而不是按照 C++ 的名称修饰(Name Mangling)规则,从而使得 C++ 代码能够与 C 代码进行互操作。原创 2025-03-17 16:24:09 · 1277 阅读 · 0 评论 -
python模拟噪声:均匀噪声、高斯噪声、椒盐噪声、泊松噪声、瑞利噪声、伽马噪声、斑点噪声、脉冲噪声
在图像处理领域,噪声(Noise) 是影响图像质量的重要因素之一,它通常由成像设备的物理特性、传输过程中的干扰或后期处理中的量化误差引入。为了研究图像去噪算法的性能,常常需要在实验中人为添加模拟噪声。模拟噪声的类型多种多样,不同的噪声模型反映了不同的噪声来源。原创 2025-03-07 19:58:47 · 3881 阅读 · 1 评论 -
CuPy加速计算 —— 使用 Python 进行 GPU 加速计算的 NumPy/SciPy 兼容数组库
CuPy:是一个基于 NVIDIA CUDA 的高效数组处理库,它提供了与 NumPy 类似的 API,但能够利用 GPU 的强大计算能力来加速数组计算。通过将数据加载到 GPU 中,CuPy 可以显著提升一些数值计算、线性代数、傅里叶变换等操作的速度。原创 2025-03-05 21:30:57 · 2447 阅读 · 0 评论