SimCSE 论文笔记

单位:普林斯顿大学计算机科学系、清华大学跨学科信息科学研究所
时间:2021.09
发表:EMNLP
论文链接: https://arxiv.org/pdf/2104.08821.pdf

一、前言

1. SimCSE想做些什么?

学习通用句向量是自然语言处理中一个基本的问题,在sentence-bert中已经证明过原始bert生成的句向量在语义相似度任务中表示非常差,但在经过孪生网络的训练后就能生成很好的句向量表示,后续的研究如bert-flow等又对bert生成的句向量存在各向异性问题进行了改良尝试。

SimCSE想要通过在CV里大放异彩的对比学习方法使Bert学习到更好的句向量表示,进一步提升bert在统一性(Alignment)和均匀性(Uniformity)指标上的性能表现。

2. SimCSE做到了什么?

提出了一个简单的对比学习框架,它可以从未标记或标记的数据中产生更好的句向量,极大地改善了最先进的句子嵌入的语义文本相似性任务。

通过实验分析和与其它baseline模型对比,发现无监督和有监督的SimCSE在均匀性和统一性指标上都有所提升。

以BERT-base模型为基准,在STS任务上SimCSE无监督和有监督模型与之前的最佳结果相比,有4.2%和2.2%的提高。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值