//这个是输入jpg格式的,有一行注释掉的是直接输入灰度图的,如果用灰度图的,可以吧上边注释掉
#include <iostream>
#include "cv.h"#include "highgui.h"
using namespace std;
int nThreshold;
int cvOtsu2D(CvMat *pGrayMat);
int cvOtsu2D(CvMat *pGrayMat)
{
double dHistogram[256][256]; //建立二维灰度直方图
double dTrMatrix = 0.0; //离散矩阵的迹
int height = pGrayMat->rows;
int width = pGrayMat->cols;
int N = height*width; //总像素数
int i, j;
for(i = 0; i < 256; i++)
{
for(j = 0; j < 256; j++)
dHistogram[i][j] = 0.0; //初始化变量
}
for(i = 0; i < height; i++)
{
for(j = 0; j < width; j++)
{
unsigned char nData1 = (unsigned char)cvGetReal2D(pGrayMat, i, j);//当前的灰度值
unsigned char nData2 = 0;
int nData3 = 0;//注意9个值相加可能超过一个字节
for(int m = i-1; m <= i+1; m++)
{
for(int n = j-1; n <= j+1; n++)
{
if((m >= 0) && (m < height) && (n >= 0) && (n < width))
nData3 += (unsigned char)cvGetReal2D(pGrayMat, m, n); //当前的灰度值
}
}
nData2 = (unsigned char)(nData3 / 9); //对于越界的索引值进行补零,邻域均值
dHistogram[nData1][nData2]++;
}
}
for(i = 0; i < 256; i++)
for(j = 0; j < 256; j++)
dHistogram[i][j] /= N; //得到归一化的概率分布
double Pai = 0.0; //目标区均值矢量i分量
double Paj = 0.0; //目标区均值矢量j分量
double Pbi = 0.0; //背景区均值矢量i分量
double Pbj = 0.0; //背景区均值矢量j分量
double Pti = 0.0; //全局均值矢量i分量
double Ptj = 0.0; //全局均值矢量j分量
double W0 = 0.0; //目标区的联合概率密度
double W1 = 0.0; //背景区的联合概率密度
double dData1 = 0.0;
double dData2 = 0.0;
double dData3 = 0.0;
double dData4 = 0.0; //中间变量
int nThreshold_s = 0;
int nThreshold_t = 0;
double temp = 0.0; //寻求最大值
for(i = 0; i < 256; i++)
{
for(j = 0; j < 256; j++)
{
Pti += i*dHistogram[i][j];
Ptj += j*dHistogram[i][j];
}
}
for(i = 0; i < 256; i++)
{
for(j = 0; j < 256; j++)
{
W0 += dHistogram[i][j];
dData1 += i*dHistogram[i][j];
dData2 += j*dHistogram[i][j];
W1 = 1-W0;
dData3 = Pti-dData1;
dData4 = Ptj-dData2;
Pai = dData1 / W0;
Paj = dData2 / W0;
Pbi = dData3 / W1;
Pbj = dData4 / W1; // 得到两个均值向量,用4个分量表示
dTrMatrix = ((W0 * Pti - dData1) * (W0 * Pti - dData1) + (W0 * Ptj - dData2) * (W0 * Ptj- dData2)) / (W0 * W1);
if(dTrMatrix > temp)
{
temp = dTrMatrix;
nThreshold_s = i;
nThreshold_t = j;
}
}
}
nThreshold = (nThreshold_s + nThreshold_t) / 2;//返回阈值,有多种形式,可以单独某一个,也可 //是两者的均值
return nThreshold;
}
int main( )
{
IplImage *img1 = cvLoadImage("test1.jpg",1);//加载图片
IplImage *img= cvCreateImage(cvGetSize(img1),img1->depth,1);//灰度图
cout << img1->nChannels<< endl;
cvCvtColor(img1,img,CV_RGB2GRAY);
//IplImage *img = cvLoadImage("copyImage.bmp", 0);//加载图片
cvNamedWindow("Miss", CV_WINDOW_AUTOSIZE);//创建显示窗口
cvShowImage("Miss", img);//显示图片
cvNamedWindow("二维Otsu", CV_WINDOW_AUTOSIZE);
CvMat *imgMat = cvCreateMat(img->height, img->width, CV_8UC1);//创建矩阵,其type为CV_8UC1
cvConvert(img, imgMat);//将图像转换成矩阵形式
int t = cvOtsu2D(imgMat);//求二维阈值分割的阈值
cvThreshold(img, img, t, 255, CV_THRESH_BINARY);//用求得的阈值分割图像
cvShowImage("二维Otsu", img);
cvWaitKey(0);//保持图像的显示窗口
cvReleaseImage(&img);//释放图像资源
cvReleaseMat(&imgMat);//释放矩阵资源
cvDestroyAllWindows();//销毁窗口
return 0;
}