03-《机器学习及实践》学习之使用线性分类模型

本文通过标准化数据并使用逻辑斯蒂回归及随机梯度下降两种线性分类模型对肿瘤数据进行训练与预测,对比了这两种模型在良性与恶性肿瘤分类任务上的性能表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#使用线性分类模型从事良、恶性肿瘤任务分析

#标准化数据
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier

#保证每个维度的特征数据方差为1,均值为0.使得预测结果不会被某些维度过大的特征值而主导。
ss=StandardScaler()
X_train=ss.fit_transform(X_train)
X_test= ss.transform(X_test)

#初始化两个函数体(类)
lr=LogisticRegression()
sgdc=SGDClassifier()

lr.fit(X_train,y_train) #使用逻辑斯蒂函数的fit用来训练模型参数
lr_y_predict=lr.predict(X_test) #使用训练好的模型lr对X_test进行预测,结果存储在变量lr..中
print lr_y_predict

print '-=+_-=+_-=+_-=+_-=+_-=+_-=+_'
sgdc.fit(X_train,y_train) #调用SGDClassifier(随机梯度下模型)的fit函数/模块用来训练模型参数
sgdc_y_predict=sgdc.predict(X_test)
print sgdc_y_predict
#使用线性分类模型从事良恶性肿瘤预测任务的性能分析
from sklearn.metrics import classification_report
#使用逻辑斯蒂回归模型自带的评分函数score获得模型在测试集上的准确性结果
print 'Accuracy of LR Classifier: ',lr.score(X_test,y_test)

#利用Classification_report模块获得LogisticRegression其他的三个指标的结果
print classification_report(y_test,lr_y_predict,target_names=['Benign','Malignant'])

#使用随机梯度下降模型自带的评分函数score获得模型在测试集上的准确性结果。
print 'Accuarcy of SGD Classifier: ',sgdc.score(X_test,y_test)
#利用classification_report获得SGDClassifier其他三个指标的结果。
print classification_report(y_test,sgdc_y_predict,target_names=['Benign','Malignant'])


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千码君2016

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值