CUDA之Stream介绍

CUDA Stream是一种异步机制,用于并行执行内存传输和GPU计算操作,提高数据吞吐量。通过创建和管理多个Stream,CUDA程序可以避免菊花链式的操作顺序,实现数据传输与计算的并行,从而有效利用GPU资源,尤其适用于处理大规模数据的深度学习和计算机视觉任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Stream的概念

用到CUDA的程序一般需要处理海量的数据,内存带宽经常会成为主要的瓶颈。在Stream的帮助下,CUDA程序可以有效地将内存读取和数值运算并行,从而提升数据的吞吐量。

Cuda stream是指一堆异步的cuda操作,他们按照host代码调用的顺序执行在device上。
典型的cuda编程模式我们已经熟知了:
· 将输入数据从host转移到device
· 在device上执行kernel
· 将结果从device上转移回host

Cuda Streams

所有的cuda操作(包括kernel执行和数据传输)都显式或隐式的运行在stream中,stream也就两种类型,分别是:
· 隐式声明stream(NULL stream)
· 显示声明stream(non-NULL stream)

异步且基于stream的kernel执行和数据传输能够实现以下几种类型的并行:
· Host运算操作和device运算操作并行
· Host运算操作和host到device的数据传输并行
· Host到device的数据传输和device运算操作并行
· Device内的运算并行

二、Stream的使用

由于GPU和CPU不能直接读取对方的内存,CUDA程序一般会有一下三个步骤:1)将数据从CPU内存转移到GPU内存(HtoD),2)GPU进行运算并将结果保存在GPU内存(DtoD),3)将结果从GPU内存拷贝到CPU内存(DtoH)。

如果不做特别处理,那么CUDA会默认只使用一个Stream(Default Stream)。在这种情况下,刚刚提到的三个步骤就如菊花链般蛋疼地串联,必须等一步完成了才能进行下一步。是不是很别扭?

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值