python识别图片文字

该篇博客介绍了如何使用Python结合OpenCV和pytesseract库来识别图像中的文字。首先,通过OpenCV读取并处理图片,包括转化为灰度图、去噪、二值化等步骤,然后利用pytesseract将处理后的图像转换为可读的字符串。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python识别图片文字

from PIL import Image
import pytesseract
import cv2
import numpy as np

src_path=""

def get_string(img_path):
	# 读取图片
	img = cv2.imread(img_path)
	# 转化为灰度图
	img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
	# apply dilation and erosion to remove some noise
	kernel = np.ones((1,1), np.uint8)
	img = cv2.dilate(img, kernel, iterations=1)
	img = cv2.erode(img, kernel, iterations=1)
	cv2.imwrite(src_path + "removed_noise.png", img)
	# Apply threshold to get image with only black and white
	img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GANSSIAN_C, cv2.THRESH_BINARY, 11, 2)
	cv2.imwrite(src_path + "thres.png", img)
	
	result = pytesseract.image_to_string(Image.open(src_path + "thres.png"))
	return result

print get_string(src_path + "1.png")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值