同声传译能否助力机器翻译?
1. 同声传译研究方法
部分研究人员试图借助出声思考法(Think - Aloud Protocols,TAP)来揭示口译过程。由于口译员在工作时忙于出声翻译,所以该方法主要应用于笔译人员。不过,这种方法存在明显问题,一是有些过程可能是无意识的,专家难以察觉;二是专家报告和轶事证据之间界限模糊。但如果在实证环境中研究足够多的对象,还是能发现一些趋势,比如研究发现上下文信息在口译中确实起着关键作用。
2. 解释性模型
为解释口译员的思维过程,研究人员构建了多种解释性模型,这些模型可分为以下几类:
- 信息处理模型 :包括Moser - Mercer、Gerver、Daro和Fabbro、Gile等人提出的模型。这些模型包含典型信息处理流程图中的元素,如输入缓冲区、短期和长期记忆、处理模块、循环、竞争资源的任务以及输出生成器。
- 神经认知模型 :
- Paradis假设双语者不仅能激活或抑制神经基质中的单词(词汇激活),还能激活或抑制大脑中存储不同语言的整个区域。在同声传译中,源语言和目标语言区域都会被激活,但源语言区域的激活程度略高。此外,同声传译不仅需要“自动”的语言能力,还需要“非自动”的世界知识。
- Gernsbacher将理解建模为构建心理表征或结构的过程。当信息到来时,它要么被映射到现有结构,要么用于创建新结构。这些结构的构建块是较小的记忆节点,它们由传入的刺激激活,激活后可用于认知过程,还能发送信号增强或抑制其他记忆节点的激活。Gernsbacher认为抑制对于减少干扰刺激的影响至关重要。
-