18、多相机检测算法跟踪与应用:以占用检测为例

多相机检测算法跟踪与应用:以占用检测为例

1. 单相机目标跟踪算法

单相机目标跟踪在计算机视觉领域有着广泛的应用,下面介绍几种常见的算法。

1.1 颜色模型

Pérez等人提出的颜色模型在粒子滤波器中被广泛使用。目标的观测通过以位置$x_t$为中心的区域$R(x_t)$提取的$N$ - 仓颜色直方图来表示,记为$Q(x_t) = {q(n; x_t)} {n = 1, \cdots, N}$,其中:
[q(n; x_t) = C \sum
{k \in R(x_t)} \delta[b(k) - n]]
这里$\delta$是克罗内克δ函数,$C$是归一化常数,$k$是区域$R(x_t)$内的任意像素。通过对颜色直方图进行归一化,$Q(x_t)$成为一个离散概率分布。当前观测$Q(x_t)$与参考模型$Q^ $(在初始化步骤中手动构建或通过自动检测器构建)之间的相似度基于 Bhattacharyya 系数进行评估:
[d(x_t, x_0) = \sqrt{1 - \rho[Q(x_t), Q^
]}]
[\rho[Q(x_t), Q^ ] = \sum_{n = 1}^{N} \sqrt{q(n; x_t)q^ (n; x_0)}]
为了编码观测的空间信息,采用了多部分颜色模型,将目标垂直分割成两部分,分别构建两部分的颜色直方图并并联连接成新的直方图。然后,似然度评估为:
[p(y_t|x_t) \approx e^{-\lambda d^2(x_t, x_0)}]

1.2 增强粒子滤波器

Okuma 等人

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值