多相机检测算法跟踪与应用:以占用检测为例
1. 单相机目标跟踪算法
单相机目标跟踪在计算机视觉领域有着广泛的应用,下面介绍几种常见的算法。
1.1 颜色模型
Pérez等人提出的颜色模型在粒子滤波器中被广泛使用。目标的观测通过以位置$x_t$为中心的区域$R(x_t)$提取的$N$ - 仓颜色直方图来表示,记为$Q(x_t) = {q(n; x_t)} {n = 1, \cdots, N}$,其中:
[q(n; x_t) = C \sum {k \in R(x_t)} \delta[b(k) - n]]
这里$\delta$是克罗内克δ函数,$C$是归一化常数,$k$是区域$R(x_t)$内的任意像素。通过对颜色直方图进行归一化,$Q(x_t)$成为一个离散概率分布。当前观测$Q(x_t)$与参考模型$Q^ $(在初始化步骤中手动构建或通过自动检测器构建)之间的相似度基于 Bhattacharyya 系数进行评估:
[d(x_t, x_0) = \sqrt{1 - \rho[Q(x_t), Q^ ]}]
[\rho[Q(x_t), Q^ ] = \sum_{n = 1}^{N} \sqrt{q(n; x_t)q^ (n; x_0)}]
为了编码观测的空间信息,采用了多部分颜色模型,将目标垂直分割成两部分,分别构建两部分的颜色直方图并并联连接成新的直方图。然后,似然度评估为:
[p(y_t|x_t) \approx e^{-\lambda d^2(x_t, x_0)}]
1.2 增强粒子滤波器
Okuma 等人