大模型技术栈全景

前言

本文介绍大模型技术全景图,覆盖从底层硬件到上层应用的技术体系。按照技术栈的层级进行组织,为大模型学习提供参考。

大模型技术全景图(LLM Technology Landscape)

层级逻辑:硬件 → 系统 → 训练 → 模型算法 → 推理优化 → 部署运维 → 应用 → 支撑体系


一、底层硬件基础

类别 关键技术
计算硬件 GPU(H100/A100/MI300X/昇腾)、TPU(v4/v5/Trainium)、CPU辅助计算
高速互联 InfiniBand/RoCEv2(网络)、NVLink/NVSwitch(GPU直连)
存储硬件 NVMe SSD(高速缓存)、分布式存储(S3/Ceph/Lustre)、大容量RAM
新型硬件 光子计算、存算一体、量子计算(探索阶段)

二、分布式训练系统

类别 关键技术
并行策略 数据并行(AllReduce)、模型并行(张量/流水线)、3D并行、专家并行(MoE)
训练框架 PyTorch/TensorFlow/JAX + DeepSpeed(ZeRO优化器)/ Megatron-LM(张量并行)
计算优化 XLA/TorchInductor(编译)、混合精度(FP16/BF16)、梯度裁剪
资源管理 Kubernetes+Ray、Slurm、弹性训练、检查点容错

三、模型算法与核心技术

1. 模型架构
  • 基础架构:Transformer(Decoder-Only/Encoder-Decoder)
  • 核心创新
    • 注意力机制:FlashAttention(IO优化)、MQA/GQA(显存优化)、RoPE/ALiBi(位置编码)
    • 激活函数:SwiGLU、GeGLU
    • 高效结构:MoE(Switch Transformer/DeepSeek-MoE)、低秩适配
2. 预训练技术
  • 目标函数:自回归/掩码语言建模、多模态对比学习
  • 数据工程:海量数据清洗/去毒/合成生成、领域平衡
  • 训练技巧:AdamW/Sophia优化器、余弦学习率调度、z-loss稳定训练
3. 微调与对齐
  • PEFT技术:LoRA/QLoRA(4bit量化微调)、Adapter/Prompt Tuning
  • 对齐技术
    • SFT(监督微调)
    • RLHF(人类反馈强化学习)
    • 新一代对齐:DPO(直接偏好优化)、KTO(行为经济学优化)
4. 推理与优化技术关键增强
方向 技术细节
模型压缩 量化:GPTQ/AWQ(4bit)、FP8(硬件友好)、SmoothQuant(激活量化)
剪枝:结构化/非结构化剪枝
蒸馏:任务蒸馏 → 小模型部署
推理加速 KV Cache优化:PagedAttention(vLLM)、Continuous Batching(连续批处理)
解码策略:Speculative Decoding(推测解码)
算子优化:FlashAttention-2/CUDNN定制内核
推理引擎 专用引擎:vLLM(高吞吐)、TensorRT-LLM(NVIDIA优化)、TGI(Hugging Face)
通用引擎:ONNX Runtime、OpenVINO(边缘场景)

四、模型部署与运维体系独立章节

层级 关键技术
部署架构 • 云原生:K8s + Istio + Knative(自动扩缩容)
• 边缘计算:TensorRT + OpenVINO
• Serverless:AWS Lambda/Cloud Run
服务化组件 • API网关(REST/gRPC)
• 流式响应(SSE/WebSocket)
• 动态批处理(Dynamic Batching)
监控治理 • 指标:QPS/延迟/错误率/GPU利用率(Prometheus+Grafana)
• 安全:输入过滤/对抗防御
• 成本优化:Spot实例调度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值