- 博客(16)
- 收藏
- 关注
原创 Nginx之理解limit_req指令的参数
限制每1s处理1个请求。限制每500ms处理1个请求限制每100ms处理1个请求每30s处理1个请求每1ms处理5个请求总结:最小的处理时间单位是1ms。
2024-12-31 11:03:16
671
原创 Nginx之打印ebpf调试信息
当我们修改nginx的ebpf程序后,希望能打印出一些日志来调试程序,nginx的ebpf程序源码文件ngx_quic_reuseport_helper.c中有一个debugmsg函数(实际调用的是bpf_trace_printk)用来打印调试信息,但是实际调试程序中发现打印不出来,这需要修改几点来做到。这样debugmsg就会起作用并将日志打印到/sys/kernel/debug/tracing/trace_pipe中。
2024-12-31 11:02:25
438
原创 Hive SQL:某篇文章最大同时在线/阅读的人数
场景逻辑说明:artical_id-文章ID代表用户浏览的文章的ID,artical_id-文章ID为0表示用户在非文章内容页(比如App内的列表页、活动页等)。(uid-用户ID, artical_id-文章ID, in_time-进入时间, out_time-离开时间, sign_in-是否签到)问题:统计每篇文章同一时刻最大在看人数,如果同一时刻有进入也有离开时,先记录用户数增加再记录减少,结果按最大人数降序。离开时间单拎出来,同时记为-1,聚合两个表,按时间排序。2、利用窗口函数对计数求累计和;
2024-12-20 16:39:09
360
原创 Hive SQL:得分不小于平均分的最低分
表二:examination_info表(exam_id试卷ID, tag试卷类别, difficulty试卷难度, duration考试时长, release_time发布时间)表一: exam_record表(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分)示例:试卷9001和9002为SQL类别,作答这两份试卷的得分有[80,89,87,90],平均分为86.5,不小于平均分的最小分数为87。
2024-12-18 16:02:17
252
原创 HIVE SQL:某一类别试卷得分的截断平均值
例子:试卷9001为高难度SQL试卷,该试卷被作答的得分有[80,81,84,90,50],去除最高分和最低分后为[80,81,84],平均分为81.6666667,保留一位小数后为81.7。表2:exam_record(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分)方法二:利用窗口函数排序后,去掉每组exam_id非NULL行的分数求平均;得分的截断平均值(去掉一个最大值和一个最小值后的平均值)。
2024-12-18 14:11:36
295
原创 Hive SQL:用户登录最大连续间隔天数
tips: lag() 和 lead() 函数都是基于窗口的函数,它们将被处理的数据集分成窗口,并为每个窗口中的记录返回一个结果。这些函数通常用于时间序列数据,以便比较当前记录与先前或后续记录之间的值。总结:遇到类似求取用户登录最大连续间隔天数或者最大连续登陆天数的问题,就是利用开窗函数,分步骤形成时间序列数据,查看序列数据和登录日期的时间差,寻找规律,从而进行计算。lag() 函数返回在当前行之前指定偏移量的行的列值。而 lead() 函数返回在当前行之后指定偏移量的行的列值。
2024-12-16 17:34:14
687
原创 pyhton读取csv、txt文件
python读写csv、txt文件 arr = np.random.randint(0,10,size = (3,4))#储存数组到txt文件np.savetxt("arr.csv",arr,delimiter=',') # 文件后缀是txt也是一样的 #读取txt文件,delimiter为分隔符,dtype为数据类型 np.loadtxt("arr.csv",delimiter=',',dtype=np.int32)...
2021-04-21 11:24:35
182
原创 简单ocr识别加c++本地识别接口实现
*本博客主要是记录在caffe(添加了新层)框架上训练数字串识别算法crnn的模型,用VS2013封装一个识别数字串的接口。1. crnn模型训练框架:crnn.caffe在github上的地址数据准备:数据增强到了六万,只识别0~9,+,-,. 等(可能数据还没达到十万量级识别精度欠佳)模型训练:训练模型时需要resize到128*32,为了避免拉抻变形,所以这里需要在原始图片周围加...
2019-03-22 11:58:48
3221
原创 验证darknet框架自带的darknet_no_gpu.sln项目的目标检测性能
前不久验证了darknet框架下的检测预测项目,还有opencv3.4.2中yolov3的检测性能,在这里做一个记录对比。一些参考链接github-darknet地址yolo网站learn opencv笔记本配置这是作者的配置和实验结果,可以对比下我自己测试的检测性能结果...
2019-01-05 17:19:50
1354
1
原创 caffe-yolo,C++实现yolo模型目标检测算法
这篇文章的主要目的是想把yolo转到caffe框架上去做检测,训练检测模型用的是github上https://github.com/yeahkun/caffe-yolo 的框架,训练了一个试卷中教师批注分数位置检测的模型,然后在用c++实现预测功能。环境配置ubuntu16.04上训练caffe-yolo模型windows操作系统实现预测功能编译工具Visual Studio 2013...
2019-01-05 16:55:20
2778
1
原创 在caffe中添加RPN层,实现c++版Faster rcnn检测算法
在caffe根目录下,example/cpp_classification/文件夹下classification.cpp就是用c++实现分类的;caffe没有提供现成的实现检测的c++代码,因此本文主要是通过在caffe中新添加一个层RPN层,来实现c++目标检测算法;这里的检测模型是自己训练的检测试卷手写分数的检测模型。
2019-01-05 14:53:15
872
3
原创 用C++调用caffe模型(windows 32bit OS):新增加一个层,caffe.proto重新编译
**用C++调用caffe模型(windows 32bit OS):新增加一个层,caffe.proto重新编译**前言:现阶段是想用C++调用caffe模型,caffe的底层是由C++代码实现,在/caffe-master/examples/cpp_classification目录下有实现c++调用分类模型进行分类的示例文件classification.cpp。此前下载的caffe中没有r...
2018-12-04 14:49:13
658
1
原创 安装python之后,是否需要再单独安装pip
如果python2版本是>=2.7.9, python3版本是>=3.4, pip已将一起随python安装成功了。
2018-11-21 11:13:07
5121
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人