
数据分析
文章平均质量分 86
数据分析记录、分享、学习
wcyd
高校教师
关注大数据、人工智能、LLM 、AI 图像视频和设计(Interested in AI, LLM, Stable Diffusion, and design)
公众号:AI智数课堂
人生实苦,但我足够相信~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python文件编码检测与处理完全指南:告别乱码困扰
在日常数据处理中,文件编码格式的多样性(如UTF-8、GBK、GB2312等)常导致乱码问题。传统的手动尝试编码方法效率低下且不可靠。chardet库通过统计分析字节序列模式,结合编码特征数据库,智能推测最可能的编码格式,准确率高达90%以上。本文介绍了chardet的基础使用案例,如基本编码检测和大文件优化处理,以及高级应用场景,如混合编码处理和批量文件检测。此外,还提供了性能优化技巧和异常处理方案,帮助用户高效解决编码问题。通过本文,用户能够准确检测文件编码,处理复杂场景,并优化检测性能。原创 2025-05-15 09:09:04 · 902 阅读 · 0 评论 -
Pandas 时间处理利器:to_datetime() 与 Timestamp() 深度解析
详细介绍 to_datetime()和Timestamp()的区别原创 2025-05-11 23:29:15 · 1151 阅读 · 0 评论 -
Pandas排名方法详解:为什么不同method参数会产生不同结果?
在数据分析中,排名(Ranking)是一个常见且重要的操作。Pandas提供了rank()方法来实现各种排名需求,但很多初学者在使用时会对不同method参数产生的不同结果感到困惑。本文将通过实际示例详细解释各种排名方式的区别和应用场景。原创 2025-04-26 22:29:46 · 547 阅读 · 0 评论 -
Pandas 日期时间 Series.dt 处理全指南(小白友好版)
Series.dt让你像玩积木一样轻松拆解、分析、操作时间数据,是时间序列分析入门的第一步!原创 2025-04-12 20:13:40 · 454 阅读 · 0 评论 -
Pandas 字符串操作神器:Series.str系列详解(小白友好版)
Series.str让你能用“一行代码”批量处理字符串,是 Pandas 中最强大的数据清洗工具之一!原创 2025-04-12 17:58:31 · 612 阅读 · 0 评论 -
数据去重详解
在数据处理过程中,经常会遇到重复数据的问题。如果不进行去重,可能会导致分析结果偏差、计算资源浪费等问题。等多种数据结构,并提供代码示例,帮助初学者快速掌握数据去重的技巧。数据去重(Deduplication)是指。,只保留唯一的数据项。Pandas 是数据分析的利器,提供了。方法,适用于数值型数据去重。方法,适用于表格数据去重。原创 2025-03-26 17:04:30 · 748 阅读 · 0 评论 -
jupyter汉化、修改默认路径详细讲解
jupyter汉化以及默认路径的修改原创 2025-02-28 11:33:25 · 731 阅读 · 0 评论 -
如何使用Python生成词云图:结合`wordcloud`、`imageio`、`collections`和`jieba`分词模块
详细介绍如何使用Python中的wordcloud、imageio、collections以及jieba分词模块来生成个性化的词云图原创 2024-12-31 17:42:02 · 1790 阅读 · 0 评论 -
PCA降维全解析:如何从复杂数据中提炼出核心信息
本文详细介绍了PCA的基本理论和操作流程,通过一个生动的示例展示了如何将六门课的成绩数据降维成理科和文科成绩。PCA不仅能够简化数据结构,减少冗余,还可以提高分析效率,在数据可视化、噪声去除等领域有广泛应用。无论你是数据分析的新手还是有经验的从业者,掌握PCA都能帮助你更好地理解和处理复杂的数据集,让数据分析更加精准和高效。原创 2024-11-30 19:24:00 · 896 阅读 · 0 评论 -
登录MySQL时,提示ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost:3306‘ (10061)
解决MySQL登录报错:ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost:3306' (10061)问题原创 2024-10-25 09:49:23 · 20412 阅读 · 5 评论 -
VSCode全能攻略:前端到Python再到Jupyter的终极指南
文档详细介绍了 VSCode 的下载、安装、插件安装和配置,以及如何通过自定义设置和快捷键提高开发效率。特别针对 Web 前端、Python 编程和 Jupyter Notebook 使用场景,推荐了一系列实用插件,并提供了详细的安装和使用指导。此外,还强调了注意事项,确保用户能够避免常见问题,充分利用 VSCode 的强大功能。原创 2024-09-16 13:40:21 · 2859 阅读 · 0 评论 -
【Numpy】04 深入理解NumPy的高级索引技术
在Python的数据科学领域,NumPy库以其高效的数组操作能力成为分析和计算的基石。本文深入探讨了NumPy的高级索引技术,包括花式索引和布尔索引,旨在帮助读者从基础到高级,掌握NumPy的数组操作。通过花式索引,你可以自由选择数组中的元素,无论是一维还是多维数组;布尔索引则允许你根据条件筛选数据。文章通过实例代码和详细注释,展示了这些技术的应用,助力读者在数据分析的旅途上更进一步。原创 2024-06-07 17:07:29 · 1503 阅读 · 0 评论 -
轻松上手Jupyter Notebook:数据分析与可视化的终极指南
本博客为你详细介绍了如何安装、使用和优化Jupyter Notebook。无论你是数据科学新手还是经验丰富的老手,这里都有你需要的实用指南。从基本的安装步骤,到创建和运行Notebook,再到数据可视化和生成Markdown表格,我们涵盖了所有关键操作。你还将学习如何使用Pandas库生成和操作表格数据,以及如何将Notebook导出为PDF文件。通过这篇博客,你将掌握Jupyter Notebook的核心功能,提升数据分析和机器学习的效率。快来探索Jupyter Notebook的强大功能吧!原创 2024-05-31 16:43:59 · 3388 阅读 · 0 评论 -
【数据分析】打造完美数据分析环境:Python开发环境搭建全攻略
在数据分析的世界中,拥有一个稳定且高效的Python开发环境是成功的关键。然而,对于初学者来说,如何选择合适的工具并正确地进行安装和配置可能会让人感到困惑。本文将详细介绍三种主要的Python数据分析环境搭建方式:使用pip、Anaconda和Miniconda。无论你是刚刚起步的新手,还是需要强大科学计算功能的专业用户,亦或是系统资源有限的高级用户,这篇指南都能满足你的需求。通过逐步讲解每种方法的安装步骤、环境配置以及常见数据分析库的安装,我们将帮助你轻松搭建一个完美的数据分析环境,开启你的数据分析之旅。原创 2024-05-31 16:14:36 · 2072 阅读 · 0 评论 -
【Numpy】03 数组的切片和索引操作深入详解
在数据分析和科学计算中,NumPy 是一个关键工具。本文将详细讲解 NumPy 数组的索引和切片操作。从基本概念入手,解释什么是索引和切片,以及它们的用途。通过一系列代码示例,你将学会如何在一维和多维数组中进行索引和切片操作,还会了解负索引的用法及其与 Python 列表切片的区别。无论你是新手还是希望巩固基础的老手,这篇博客都将为你提供实用的技巧和知识。快来探索 NumPy 数组的奇妙世界吧!原创 2024-05-29 12:01:06 · 2857 阅读 · 0 评论 -
【Numpy】02 高级技巧:数组操作与随机数生成
本文详细介绍了NumPy库中的高级数组操作技巧,包括沿不同轴向进行的求和、平均值和最大值计算等。通过二维数组示例,清晰解释了轴0(行)和轴1(列)的概念,并扩展到更高维度的数组操作。此外,文章还探讨了NumPy在随机数生成方面的应用,如生成均匀分布、标准正态分布随机数以及随机整数,同时强调了设置随机数种子以确保结果可重复的重要性。原创 2024-05-29 09:22:32 · 1131 阅读 · 0 评论 -
【Numpy】01 基础入门:创建和管理多维数组
NumPy,Python的数值计算库,以其高效的多维数组和丰富的数学函数,成为科学计算的基石。本博客将简明扼要地介绍NumPy的基础,包括数组的创建和管理,以及如何生成特定类型的数组。无论您是初学者还是有经验的开发者,都能在这篇入门指南中快速掌握NumPy的核心概念。原创 2024-05-28 22:42:01 · 1041 阅读 · 0 评论 -
【pandas】01 数据科学入门:Pandas中的Series与DataFrame详解
本文简要介绍了Pandas库的两大核心数据结构:Series和DataFrame。Series为带索引的一维数组,而DataFrame则是类似Excel表格的二维数据结构。文章通过示例代码,展示了如何创建和操作这些数据结构,为数据分析和机器学习模型构建提供基础。原创 2024-05-28 17:32:20 · 2018 阅读 · 0 评论