题目网址UVA - 1354 ;
题目大意是在用长度为1的木棍和有重量的吊坠,组成满足要求的天平 (wa*la+wb*lb)
关于思路是借鉴的网上的大佬的,这种二分枚举方法以前没有用过,用二级制来表示当前子集,该位为1表示该位属于当前子集,这样确定一个解答树;
厉害的部分在于,将当前子集分开的部分,那个代码;
for(int l=(x-1)&x; l>0; l=(l-1)&s){
r=(x^l); //这样l, r所对应的子集就是把x里面的1 分开,也就是x所分成的左右子集;
}
各种细节的实现看代码吧:
#include <iostream>
#include<string>
#include<cstdio>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
#include<cstring>
using namespace std;
const int maxn=(1<<7)+1;
struct node
{
double l;
double r;
node(double xx=0,double yy=0)
{
l=xx;
r=yy;
}
};
vector<node> res[maxn];
int w[maxn];
double ans;
double sumw[maxn];
int vis[maxn];
int s;
double r;
int bitcout(int x)
{
if(x==0)
return 0;
return bitcout(x/2)+(x&1);
}
void dfs(int x)
{
if(vis[x]) //剪枝
return ;
vis[x]=1;
if(bitcout(x)==1) //只有一个1说明是叶子节点,不存在左右长度
{
res[x].push_back(node(0,0));
return;
}
for(int l=(x-1)&x; l>0; l=(l-1)&x)
{
int r=(x^l);
dfs(l);
dfs(r);
for(int i=0; i<res[l].size(); i++)
{
for(int j=0; j<res[r].size(); j++)
{
double len=sumw[l]+sumw[r];
//这种分配下的左长度等于 左臂长度加上左子集的左臂长度 与 右臂长度加上右臂右子集的左臂长度 的最小值
double ll=min(-(sumw[r])/len+res[l][i].l,sumw[l]/len+res[r][j].l); //为了方便,把左边部分的值设为负值
//右长度等于 左臂长度加上左子集的右臂长度 与 右臂长度加上右子集的右臂长度的最小值
double rr=max(-sumw[r]/len+res[l][i].r,sumw[l]/len+res[r][j].r);//右臂为正
res[x].push_back(node(ll,rr)); //将当前子集分布存入
}
}
}
}
double solve()
{
int x = (1<<s)-1;
dfs(x);
double ans = -1;
for(int i = 0; i < res[x].size(); i++)
{
if( res[x][i].r - res[x][i].l < r )
{
if(res[x][i].r - res[x][i].l > ans)
ans = res[x][i].r-res[x][i].l;
}
}
return ans;
}
int main()
{
std::ios::sync_with_stdio(false);
int t;
cin>>t;
while(t--)
{
memset(res,0,sizeof(res));
memset(vis,0,sizeof(vis));
cin>>r>>s;
for(int i = 0; i < s; i++)
{
cin>>w[i];
}
for(int i = 0; i < (1<<s); i++)
{
sumw[i]=0;
for(int j=0; j<s; j++)
{
if(i&(1<<j))
{
sumw[i]+=w[j]; //计算此集合总重
}
}
}
double ans=solve();
if(ans==-1)
cout<<-1<<endl;
else
printf("%.16f\n",ans);
}
return 0;
}
ob之2