Pandas 系列(一)
代码如下:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
matplotlib.pyplot 是 Python 中用于生成可视化图表的核心模块之一,它提供了类似 MATLAB 的交互式绘图接口,可以方便地绘制线图、散点图、柱状图等多种类型的图形。
要使用 pyplot 绘图,通常首先导入该模块,并创建一个图形对象。
1.创建Series对象
s1 = pd.Series([1, 3, 5, 7, 9])
s1
使用 pandas 库中的 Series 类来创建一个包含 [1, 3, 5, 7, 9] 的 Series 对象,并将其赋值给变量 s1
type(s1)
#以上是自动索引,0,1,2,3,4,,也可以增加手动索引
s1.index = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’]
s1
s2 = pd.Series([1, 3, 5, 7, 9], index=[‘a’, ‘b’, ‘c’, ‘d’, ‘e’])
s2
type(s2) #查看数据类型
s3 = pd.Series({‘a’:1, ‘b’:3, ‘c’:5, ‘d’:7, ‘e’:9})
s3
s4 = pd.Series(5)
s4
s5 = pd.Series(5, index=[‘a’, ‘b’, ‘c’, ‘d’])
s5
s6 = pd.Series(5, index=range(100, 107, 2))
s6
s7 = pd.Series(5, index=np.arange(100, 107, 2))
s7
s8 = pd.Series(range(1,10, 2))
s8
s9 = pd.Series(np.arange(15,20),index=np.arange(9,4,-1))
s9
上述代码中,np.arange(15, 20) 生成了一个包含 [15, 16, 17, 18, 19] 的数组,定义了索引为 9, 8, 7, 6, 5。最终通过 pd.Series 将值与自定义索引结合,生成了一个结构化的 Series 对象。
s9.index
s9.values, type(s9.values)
运行代码如下:
1.
2.
3.
4.
5.
6.