Pandas 系列(一)

Pandas 系列(一)

代码如下:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

matplotlib.pyplot 是 Python 中用于生成可视化图表的核心模块之一,它提供了类似 MATLAB 的交互式绘图接口,可以方便地绘制线图、散点图、柱状图等多种类型的图形。

要使用 pyplot 绘图,通常首先导入该模块,并创建一个图形对象。

1.创建Series对象

s1 = pd.Series([1, 3, 5, 7, 9])
s1

使用 pandas 库中的 Series 类来创建一个包含 [1, 3, 5, 7, 9] 的 Series 对象,并将其赋值给变量 s1

type(s1)

#以上是自动索引,0,1,2,3,4,,也可以增加手动索引
s1.index = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’]
s1

s2 = pd.Series([1, 3, 5, 7, 9], index=[‘a’, ‘b’, ‘c’, ‘d’, ‘e’])
s2

type(s2) #查看数据类型

s3 = pd.Series({‘a’:1, ‘b’:3, ‘c’:5, ‘d’:7, ‘e’:9})
s3

s4 = pd.Series(5)
s4

s5 = pd.Series(5, index=[‘a’, ‘b’, ‘c’, ‘d’])
s5

s6 = pd.Series(5, index=range(100, 107, 2))
s6
s7 = pd.Series(5, index=np.arange(100, 107, 2))
s7

s8 = pd.Series(range(1,10, 2))
s8

s9 = pd.Series(np.arange(15,20),index=np.arange(9,4,-1))

s9

上述代码中,np.arange(15, 20) 生成了一个包含 [15, 16, 17, 18, 19] 的数组,定义了索引为 9, 8, 7, 6, 5。最终通过 pd.Series 将值与自定义索引结合,生成了一个结构化的 Series 对象。

s9.index

s9.values, type(s9.values)

运行代码如下:
1.
在这里插入图片描述
2.在这里插入图片描述
3.在这里插入图片描述
4.在这里插入图片描述

5.在这里插入图片描述

6.在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毛大猫(蓉火科技)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值