Pandas 系列(二)

Pandas 系列(二):

Series 属性(一):

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

使用 matplotlib.pyplot 进行绘图时,首先需要导入模块,并根据具体需求调用相关函数来生成图表。通常使用以下语句:import matplotlib.pyplot as plt导入 pyplot 模块,并将其简称为 plt#

s10 = pd.Series([‘a’,‘b’,‘c’], index=[101, 102, 103], name=‘MySeries’)
s10.index.name = ‘Maodamao’ #为索引起一个名字

print(s10.values) #值 [‘a’,‘b’,c’]
print(s10.index) #索引 [101, 102, 103]

print(s10.name) #Series名字:MySeries
print(s10.index.name) #索引名字: ‘Maodamao’

Pandas 是一个强大的数据分析库,它提供了灵活的 Series 和 DataFrame 结构来处理一维和二维数据。#

在 Series 中,索引(index)不仅用于标识数据的位置,还可以携带额外的元信息,例如索引的名称(name)。#

获取索引名称

每个 Series 对象都有一个 name 属性,该属性表示整个索引的名称。可以通过直接访问 .name 来获取索引的名称 #

代码运行如下:

在这里插入图片描述

基于C2000 DSP的电力电子、电机驱动和数字滤波器的仿真模型构建及其C代码实现方法。首先,在MATLAB/Simulink环境中创建电力电子系统的仿真模型,如三相逆变器,重点讨论了PWM生成模块中死区时间的设置及其对输出波形的影响。接着,深入探讨了C2000 DSP内部各关键模块(如ADC、DAC、PWM定时器)的具体配置步骤,特别是EPWM模块采用上下计数模式以确保对称波形的生成。此外,还讲解了数字滤波器的设计流程,从MATLAB中的参数设定到最终转换为适用于嵌入式系统的高效C代码。文中强调了硬件在环(HIL)和支持快速原型设计(RCP)的重要性,并分享了一些实际项目中常见的陷阱及解决方案,如PCB布局不当导致的ADC采样异常等问题。最后,针对中断服务程序(ISR)提出了优化建议,避免因ISR执行时间过长而引起的系统不稳定现象。 适合人群:从事电力电子、电机控制系统开发的技术人员,尤其是那些希望深入了解C2000 DSP应用细节的研发工程师。 使用场景及目标:①掌握利用MATLAB/Simulink进行电力电子设备仿真的技巧;②学会正确配置C2000 DSP的各项外设资源;③能够独立完成从理论设计到实际产品落地全过程中的各个环节,包括但不限于数字滤波器设计、PWM信号生成、ADC采样同步等。 其他说明:文中提供了大量实用的代码片段和技术提示,帮助读者更好地理解和实践相关知识点。同时,也提到了一些常见错误案例,有助于开发者规避潜在风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毛大猫(蓉火科技)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值