详细说明基于Diffusion Policy的控制原理,具体怎么进行Vision Language Action控制
ChatGPT 说:
已思考 16s
基于 Diffusion Policy 的控制原理(含 VLA:Vision-Language-Action)
下面把扩散策略(Diffusion Policy, DP)用于机器人/操控的核心思路、训练与推理流程、以及视觉-语言-动作(VLA)一体化控制怎么落地,系统地讲清楚。你可以把它理解为:用扩散生成模型直接建模“动作分布(更常见是动作序列/轨迹分布)”,并把视觉与语言当作条件灌入,从噪声一步步“反扩散”出合理动作。
1) 为什么用 Diffusion 做策略?
传统 BC(行为克隆)常见做法是回归下一步动作或自回归生成动作序列。这两类都有问题:
-
回归点估计 → 模态塌缩(平均动作)、接触/多模态任务易抖动;
-
自回归 → 误差积累,长视野不稳。
扩散策略直接学习整段动作序列(如未来 H 步)的复杂多峰分布:
-
生成式 → 天然支持多模态解;
-
轨迹级 → 更稳、能看更远;
-
条件生成 → 轻松融合视觉、语言、目标等条件;
-
采样时可做引导(classifier-free guidance、价值函数/成本引导),显式权衡可行性与任务目标。
2) 基本配方:条件轨迹扩散
数据与表征
-
每条演示/交互数据:
-
{(ot,at)}t=1T\{(o_t, a_t)\}_{t=1}^{T}{(ot,at)}t=1T其中 oto_tot 含图像帧/深度/状态/语言提示等,ata_tat 为连续控制(关节/末端速度、力/力矩、或离散动作 one-hot)。
-
建模动作块(chunk):
-
at:t+H−1∈RH×da\mathbf{a}_{t:t+H-1} \in \mathbb{R}^{H\times d_a}at:t+H−1∈RH×da这是 DP 常见做法:每次预测未来 H 步,执行前 k 步(k≥1),然后滑窗/滚动重规划。
前向扩散(加噪)
-
选定噪声日程(β-schedule 或连续噪声 σt\sigma_tσt),把真动作序列逐步加噪得到 xτ\mathbf{x}_\tauxτ(τ\tauτ 为噪声步/时间连续变量):
-
q(xτ∣x0)=N(ατx0, στ2I)q(\mathbf{x}_\tau|\mathbf{x}_0)=\mathcal{N}(\alpha_\tau \mathbf{x}_0,\; \sigma_\tau^2 \mathbf{I})q(xτ∣x0)=N(ατx0,στ2I)其中
x0≡at:t+H−1\mathbf{x}_0 \equiv \mathbf{a}_{t:t+H-1}x0≡at:t+H−1。
反向去噪(策略网络)
-
训练一个去噪网络
L=Ex0,τ,ϵ[∥ϵ−ϵθ(ατx0+στϵ,τ,c)∥2]\mathcal{L}=\mathbb{E}_{\mathbf{x}_0,\tau,\epsilon}\left[\|\epsilon - \epsilon_\theta(\alpha_\tau\mathbf{x}_0+\sigma_\tau\epsilon, \tau, c)\|^2\right]L=Ex0,τ,ϵ[∥ϵ−ϵθ(ατx0+στϵ,τ,c)∥2]ϵθ(xτ,τ,c)\epsilon_\theta(\mathbf{x}_\tau, \tau, c)ϵθ(xτ,τ,c) 预测噪声(或用 vvv-prediction):
-
-
条件 ccc 包含:
-
视觉特征(相机帧经 ViT/ResNet)、
-
语言指令(T5/BERT/CLIP-text 等)、
-
本体/历史(proprio、过去 K 步动作)、
-
任务目标(关键点/目标位姿/语义标记)。
-
网络结构(时间-轨迹 U-Net / Transformer)
-
时间维 1D U-Net/Transformer:把动作序列看成长度 H 的“时间信号”,在每层通过跨模态注意力或FiLM/Adapter注入条件。
-
视觉-语言条件先各自编码 → 融合(Cross-Attn / Perceiver-IO / MLP 投影)→ 得到条件 token,贯穿各层去噪。
采样/推理(在线控制)
-
给定当前观测 oto_tot 与语言指令 LLL,从 N(0,I)\mathcal{N}(0,I)N(0,I) 采样 xT\mathbf{x}_TxT,按 DDIM/DPMSolver 等少步采样(4–20 NFE 常见)逐步去噪:
-
xτ−Δ←Step(xτ, ϵθ(⋅,c))\mathbf{x}_{\tau-\Delta}\leftarrow \text{Step}\big(\mathbf{x}_\tau,\; \epsilon_\theta(\cdot,c)\big)xτ−Δ←Step(xτ,ϵθ(⋅,c)) -
得到
a^t:t+H−1\hat{\mathbf{a}}_{t:t+H-1}a^t:t+H−1,执行前 k 步,t ← t+k,循环。
3) VLA(Vision-Language-Action)怎么做?
目标:一段自然语言直接指定任务(“把蓝杯子放到微波炉里”),相机给出场景语义与几何,策略生成控制序列。
条件管线
-
视觉编码:
-
单帧或短视频帧堆栈,用 ViT/ResNet/Timesformer 得到
V∈RNv×d\mathbf{V}\in\mathbb{R}^{N_v\times d}V∈RNv×d。
-
可加 RoI/关键点/深度 或 语言引导的注意力(文本引导视觉聚焦)。
-
-
语言编码:
-
T5/BERT/CLIP-text → L∈RNl×d\mathbf{L}\in\mathbb{R}^{N_l\times d}L∈RNl×d。
-
指令可包含目标约束(对象名、关系、位置)。
-
-
多模态融合:
-
Cross-Attention:动作去噪 backbone 的每层查询轨迹 token,Key/Value 来自
[V;L][\mathbf{V};\mathbf{L}][V;L]。
-
或先做 VL 融合编码器 输出全局/局部上下文 token,再喂给去噪网络。
-
-
条件丢弃(CFG):
-
训练时以概率 ppp 丢弃条件(设为空),让网络学到无条件与条件两种评分;
-
采样时做classifier-free guidance:
-
ϵ^=ϵθ(⋅∣c∅)+s(ϵθ(⋅∣c)−ϵθ(⋅∣c∅))\hat\epsilon = \epsilon_\theta(\cdot|c_\emptyset) + s\Big(\epsilon_\theta(\cdot|c)-\epsilon_\theta(\cdot|c_\emptyset)\Big)ϵ^=ϵθ(⋅∣c∅)+s(ϵθ(⋅∣c)−ϵθ(⋅∣c∅))用引导系数 sss 强化对文本/视觉的遵循。
-
目标与几何注入(可选)
-
语言-到-目标位姿:用另一个网络从 (V,L)(\mathbf{V},\mathbf{L})(V,L) 预测目标 6D 位姿/轨迹,把它当作额外条件;
-
语义关键点/掩膜:从 VLM 提取目标 mask/关键点热图,连接进条件通道,让扩散对“去哪/抓哪里”更稳。
4) 多种变体 & 进阶
(A) 轨迹 vs 步进
-
轨迹扩散(推荐):一次生成 H 步,更平滑;
-
单步扩散:每步去噪一个动作,计算更省,但对长视野弱;
-
分层(层级 DP):先扩散一个高层计划/子目标 z1:Kz_{1:K}z1:K,再条件到低层控制,长程任务更稳。
(B) 价值/成本引导(“Q-guided”/“Energy-guided”)
-
额外训练一个 Qϕ(o,at:t+H−1)Q_\phi(o,a_{t:t+H-1})Qϕ(o,at:t+H−1) 或成本网络 CϕC_\phiCϕ;
-
采样时做近似梯度引导:
x←x−η∇x(−Qϕ 或 Cϕ)\mathbf{x}\leftarrow \mathbf{x} - \eta \nabla_{\mathbf{x}} \left(-Q_\phi \text{ 或 } C_\phi\right)x←x−η∇x(−Qϕ 或 Cϕ)等价于把可行/高回报区域当成“低能量”来吸引采样;融合离线 RL 思路,能显著提升成功率与安全性。
(C) 潜空间扩散(Latent DP)
-
先用 VAE 编码动作块到 z\mathbf{z}z,在潜空间扩散,最后解码成动作;
-
优点:更快(维度低)且稳定,适合高维(多关节+指尖力)控制。
(D) 时序建模技巧
-
Temporal Conv / Dilated Conv 或 Transformer with Rotary 做长程依赖;
-
动作/状态归一化、动作差分(Δa\Delta aΔa)、频率匹配(控制频率与相机 fps 对齐)常能显著稳态。
5) 训练端到端流程(VLA-DP)
-
数据准备
-
记录 (RGBt−K:t, propriot, text, at:t+H−1)(\text{RGB}_{t-K:t},\, \text{proprio}_t,\, \text{text},\, a_{t:t+H-1})(RGBt−K:t,propriot,text,at:t+H−1)。
-
归一化动作到 [−1,1][-1,1][−1,1];根据设备选 H∈[6,32]H\in[6,32]H∈[6,32]、控制频率 10–30 Hz。
-
-
编码器
-
视觉:冻结大模型(如 ViT-L/14)或轻微微调最后几层;
-
语言:冻结 T5/BERT/CLIP-text;
-
融合:Cross-Attn 或 FiLM;加 时步嵌入(τ\tauτ)与动作时间索引嵌入。
-
-
去噪骨干
-
1D 时序 U-Net(常见于 DP)或 Transformer-Diffusion;
-
残差块内做条件注入;支持 v-prediction、EDM/VP 噪声参数化。
-
-
损失
-
主损:∥ϵ−ϵθ∥2\|\epsilon - \epsilon_\theta\|^2∥ϵ−ϵθ∥2 或 v-pred;
-
辅助:动作平滑(∥Δa∥\|\Delta a\|∥Δa∥)、轨迹物理先验(软关节限位/速度/力矩罚);
-
条件丢弃 p≈0.1–0.2,便于 CFG。
-
-
优化
-
AdamW,lr 1e-4 左右,Cosine decay;混合精度;
-
视觉增广(色偏/裁剪/噪点)提升泛化;
-
早停看成功率/轨迹成本/接触稳定指标。
-
6) 在线推理与控制循环
单样本生成(最简)
-
读入当前观测 (V,L,proprio)(\mathbf{V},\mathbf{L},\text{proprio})(V,L,proprio);
-
从 N(0,I)\mathcal{N}(0,I)N(0,I) 采样动作噪声块 xT\mathbf{x}_TxT;
-
反复 NFE(如 8 步)去噪 → 得到 a^t:t+H−1\hat{\mathbf{a}}_{t:t+H-1}a^t:t+H−1;
-
执行前 k 步(k=1–H/2),t ← t+k,回到 1。
多样本+筛选(更稳)
-
生成 M 个候选轨迹(并行),用成本网络/碰撞检查/达成度打分,选最好执行;
-
或软融合(平均前几条)提升平滑性。
安全与约束
-
采样期间投影到力矩/速度界;
-
末端避障快速检查;
-
低通滤波/模型预测器补偿延迟。
7) 与其他策略的对比
-
vs 高斯回归 BC:DP 表达力强、抗多模态塌缩,接触/插拔/抓取更稳;
-
vs 自回归 Transformer:DP 误差不易积累,短 NFE 即可得长视野序列;
-
vs 经典 MPC:DP 以数据驱动方式直接学可行域与技巧,避免在线非凸优化,但欠物理可解释;
-
可与 RL 融合:用 Q/成本引导、或离线 RL 数据混合演示,兼得可行与回报。
8) 关键超参与实践建议
-
Horizon:桌面操作 8–16;移动/长程 16–32。
-
NFE:4–10 足够;DPMSolver/UniPC/EDM 皆可。
-
CFG scale:1.5–3.0 常用;太大易过拟合指令忽略可行性。
-
动作空间:优先 笛卡尔速度/姿态增量,再由解算器转关节,更平滑。
-
同步:相机滞后要校正;动作-图像时戳对齐至关重要。
-
数据多样性:同一指令多场景/多物体/多视角覆盖,VLA 才能稳泛化。
9) 简要伪代码
训练
python
复制编辑
for batch in D: # (imgs, text, proprio, action_seq) x0 = action_seq_normed # [B,H,Da] tau ~ Uniform(0,1) eps ~ N(0,I) xt = alpha(tau)*x0 + sigma(tau)*eps # encode conditions v_tok = VisionEncoder(imgs) # [B,Nv,D] l_tok = TextEncoder(text) # [B,Nl,D] cond = Fuse(v_tok, l_tok, proprio) # [B,Nc,D] # condition dropout for CFG cond_drop = DropoutCond(cond, p=0.2) eps_pred = Denoiser(xt, tau, cond_drop) # temporal U-Net / Transformer loss = mse(eps, eps_pred) + regs loss.backward(); opt.step()
推理(带 CFG、候选筛选)
python
复制编辑
def sample_actions(obs, text, proprio, M=4): cond = Fuse(VisionEncoder(obs), TextEncoder(text), proprio) c0 = EmptyCond() # for CFG cands = [] for m in range(M): x = randn_like(action_shape) for k in range(NFE): eps_c = Denoiser(x, t[k], cond) eps_0 = Denoiser(x, t[k], c0) eps_cf = eps_0 + s*(eps_c - eps_0) # CFG x = dpm_solver_step(x, eps_cf, t[k]) a = denorm(x) cands.append(a) best = argmin_over_cost(cands) # or learned Q/constraints return best[:k_exec]
10) 什么时候“像人一样理解指令”?
-
当你的 VL 编码器来自大规模预训练(CLIP/ViT-G + 强语义文本编码器)并在机器人数据上微调后,策略对“颜色/类别/关系/方位”会有零样本-近零样本的迁移能力。
-
如需更强的语言推理(长指令、多步骤),可把 LLM 的中间计划(如关键子目标)作为显式条件,再交给低层 DP 控制器去完成——这就是分层 VLA的一个实用路线。
结论一句话
Diffusion Policy把“未来一小段动作”当作一个要生成的对象,利用扩散模型强大的多模态条件生成与多模态分布拟合能力,让机器人在视觉与语言指令条件下,稳定地产生可行、平滑、目标一致的控制序列;配合价值/成本引导与分层规划,能覆盖更长视野与更复杂任务。
需要我把这套 VLA-DP 方案按你的具体机器人(关节数、末端类型、控制频率、相机配置)落成一个最小可复现的训练/推理仓库骨架吗?我可以直接给你数据结构、模型定义和采样循环。