详细说明基于Diffusion Policy的控制原理,具体怎么进行Vision Language Action控制

详细说明基于Diffusion Policy的控制原理,具体怎么进行Vision Language Action控制

ChatGPT 说:

已思考 16s

基于 Diffusion Policy 的控制原理(含 VLA:Vision-Language-Action)

下面把扩散策略(Diffusion Policy, DP)用于机器人/操控的核心思路、训练与推理流程、以及视觉-语言-动作(VLA)一体化控制怎么落地,系统地讲清楚。你可以把它理解为:用扩散生成模型直接建模“动作分布(更常见是动作序列/轨迹分布)”,并把视觉与语言当作条件灌入,从噪声一步步“反扩散”出合理动作。


1) 为什么用 Diffusion 做策略?

传统 BC(行为克隆)常见做法是回归下一步动作或自回归生成动作序列。这两类都有问题:

  • 回归点估计 → 模态塌缩(平均动作)、接触/多模态任务易抖动

  • 自回归 → 误差积累,长视野不稳

扩散策略直接学习整段动作序列(如未来 H 步)的复杂多峰分布

  • 生成式 → 天然支持多模态解

  • 轨迹级 → 更稳、能看更远;

  • 条件生成 → 轻松融合视觉、语言、目标等条件;

  • 采样时可做引导(classifier-free guidance、价值函数/成本引导),显式权衡可行性与任务目标。


2) 基本配方:条件轨迹扩散

数据与表征

  • 每条演示/交互数据:

  • {(ot,at)}t=1T\{(o_t, a_t)\}_{t=1}^{T}{(ot​,at​)}t=1T​

    其中 oto_tot​ 含图像帧/深度/状态/语言提示等,ata_tat​ 为连续控制(关节/末端速度、力/力矩、或离散动作 one-hot)。

  • 建模动作块(chunk):

  • at:t+H−1∈RH×da\mathbf{a}_{t:t+H-1} \in \mathbb{R}^{H\times d_a}at:t+H−1​∈RH×da​

    这是 DP 常见做法:每次预测未来 H 步,执行前 k 步(k≥1),然后滑窗/滚动重规划

前向扩散(加噪)

  • 选定噪声日程(β-schedule 或连续噪声 σt\sigma_tσt​),把真动作序列逐步加噪得到 xτ\mathbf{x}_\tauxτ​(τ\tauτ 为噪声步/时间连续变量):

  • q(xτ∣x0)=N(ατx0,  στ2I)q(\mathbf{x}_\tau|\mathbf{x}_0)=\mathcal{N}(\alpha_\tau \mathbf{x}_0,\; \sigma_\tau^2 \mathbf{I})q(xτ​∣x0​)=N(ατ​x0​,στ2​I)

    其中 x0≡at:t+H−1\mathbf{x}_0 \equiv \mathbf{a}_{t:t+H-1}x0​≡at:t+H−1​。

反向去噪(策略网络)

  • 训练一个去噪网络 ϵθ(xτ,τ,c)\epsilon_\theta(\mathbf{x}_\tau, \tau, c)ϵθ​(xτ​,τ,c) 预测噪声(或用 vvv-prediction):

    L=Ex0,τ,ϵ[∥ϵ−ϵθ(ατx0+στϵ,τ,c)∥2]\mathcal{L}=\mathbb{E}_{\mathbf{x}_0,\tau,\epsilon}\left[\|\epsilon - \epsilon_\theta(\alpha_\tau\mathbf{x}_0+\sigma_\tau\epsilon, \tau, c)\|^2\right]L=Ex0​,τ,ϵ​[∥ϵ−ϵθ​(ατ​x0​+στ​ϵ,τ,c)∥2]
  • 条件 ccc 包含:

    • 视觉特征(相机帧经 ViT/ResNet)、

    • 语言指令(T5/BERT/CLIP-text 等)、

    • 本体/历史(proprio、过去 K 步动作)、

    • 任务目标(关键点/目标位姿/语义标记)。

网络结构(时间-轨迹 U-Net / Transformer)

  • 时间维 1D U-Net/Transformer:把动作序列看成长度 H 的“时间信号”,在每层通过跨模态注意力FiLM/Adapter注入条件。

  • 视觉-语言条件先各自编码 → 融合(Cross-Attn / Perceiver-IO / MLP 投影)→ 得到条件 token,贯穿各层去噪。

采样/推理(在线控制)

  • 给定当前观测 oto_tot​ 与语言指令 LLL,从 N(0,I)\mathcal{N}(0,I)N(0,I) 采样 xT\mathbf{x}_TxT​,按 DDIM/DPMSolver 等少步采样(4–20 NFE 常见)逐步去噪:

  • xτ−Δ←Step(xτ,  ϵθ(⋅,c))\mathbf{x}_{\tau-\Delta}\leftarrow \text{Step}\big(\mathbf{x}_\tau,\; \epsilon_\theta(\cdot,c)\big)xτ−Δ​←Step(xτ​,ϵθ​(⋅,c))
  • 得到 a^t:t+H−1\hat{\mathbf{a}}_{t:t+H-1}a^t:t+H−1​,执行前 k 步,t ← t+k,循环。


3) VLA(Vision-Language-Action)怎么做?

目标:一段自然语言直接指定任务(“把蓝杯子放到微波炉里”),相机给出场景语义与几何,策略生成控制序列

条件管线

  1. 视觉编码

    • 单帧或短视频帧堆栈,用 ViT/ResNet/Timesformer 得到 V∈RNv×d\mathbf{V}\in\mathbb{R}^{N_v\times d}V∈RNv​×d。

    • 可加 RoI/关键点/深度语言引导的注意力(文本引导视觉聚焦)。

  2. 语言编码

    • T5/BERT/CLIP-text → L∈RNl×d\mathbf{L}\in\mathbb{R}^{N_l\times d}L∈RNl​×d。

    • 指令可包含目标约束对象名、关系、位置)。

  3. 多模态融合

    • Cross-Attention:动作去噪 backbone 的每层查询轨迹 token,Key/Value 来自 [V;L][\mathbf{V};\mathbf{L}][V;L]。

    • 或先做 VL 融合编码器 输出全局/局部上下文 token,再喂给去噪网络。

  4. 条件丢弃(CFG)

    • 训练时以概率 ppp 丢弃条件(设为空),让网络学到无条件条件两种评分;

    • 采样时做classifier-free guidance

    • ϵ^=ϵθ(⋅∣c∅)+s(ϵθ(⋅∣c)−ϵθ(⋅∣c∅))\hat\epsilon = \epsilon_\theta(\cdot|c_\emptyset) + s\Big(\epsilon_\theta(\cdot|c)-\epsilon_\theta(\cdot|c_\emptyset)\Big)ϵ^=ϵθ​(⋅∣c∅​)+s(ϵθ​(⋅∣c)−ϵθ​(⋅∣c∅​))

      用引导系数 sss 强化对文本/视觉的遵循。

目标与几何注入(可选)

  • 语言-到-目标位姿:用另一个网络从 (V,L)(\mathbf{V},\mathbf{L})(V,L) 预测目标 6D 位姿/轨迹,把它当作额外条件;

  • 语义关键点/掩膜:从 VLM 提取目标 mask/关键点热图,连接进条件通道,让扩散对“去哪/抓哪里”更稳。


4) 多种变体 & 进阶

(A) 轨迹 vs 步进

  • 轨迹扩散(推荐):一次生成 H 步,更平滑;

  • 单步扩散:每步去噪一个动作,计算更省,但对长视野弱;

  • 分层(层级 DP):先扩散一个高层计划/子目标 z1:Kz_{1:K}z1:K​,再条件到低层控制,长程任务更稳。

(B) 价值/成本引导(“Q-guided”/“Energy-guided”)

  • 额外训练一个 Qϕ(o,at:t+H−1)Q_\phi(o,a_{t:t+H-1})Qϕ​(o,at:t+H−1​) 或成本网络 CϕC_\phiCϕ​

  • 采样时做近似梯度引导

    x←x−η∇x(−Qϕ 或 Cϕ)\mathbf{x}\leftarrow \mathbf{x} - \eta \nabla_{\mathbf{x}} \left(-Q_\phi \text{ 或 } C_\phi\right)x←x−η∇x​(−Qϕ​ 或 Cϕ​)

    等价于把可行/高回报区域当成“低能量”来吸引采样;融合离线 RL 思路,能显著提升成功率与安全性。

(C) 潜空间扩散(Latent DP)

  • 先用 VAE 编码动作块到 z\mathbf{z}z,在潜空间扩散,最后解码成动作;

  • 优点:更快(维度低)且稳定,适合高维(多关节+指尖力)控制。

(D) 时序建模技巧

  • Temporal Conv / Dilated ConvTransformer with Rotary 做长程依赖;

  • 动作/状态归一化动作差分(Δa\Delta aΔa)、频率匹配(控制频率与相机 fps 对齐)常能显著稳态。


5) 训练端到端流程(VLA-DP)

  1. 数据准备

    • 记录 (RGBt−K:t, propriot, text, at:t+H−1)(\text{RGB}_{t-K:t},\, \text{proprio}_t,\, \text{text},\, a_{t:t+H-1})(RGBt−K:t​,propriot​,text,at:t+H−1​)。

    • 归一化动作到 [−1,1][-1,1][−1,1];根据设备选 H∈[6,32]H\in[6,32]H∈[6,32]、控制频率 10–30 Hz。

  2. 编码器

    • 视觉:冻结大模型(如 ViT-L/14)或轻微微调最后几层;

    • 语言:冻结 T5/BERT/CLIP-text;

    • 融合:Cross-Attn 或 FiLM;加 时步嵌入(τ\tauτ)与动作时间索引嵌入。

  3. 去噪骨干

    • 1D 时序 U-Net(常见于 DP)或 Transformer-Diffusion;

    • 残差块内做条件注入;支持 v-predictionEDM/VP 噪声参数化。

  4. 损失

    • 主损:∥ϵ−ϵθ∥2\|\epsilon - \epsilon_\theta\|^2∥ϵ−ϵθ​∥2 或 v-pred;

    • 辅助:动作平滑(∥Δa∥\|\Delta a\|∥Δa∥)、轨迹物理先验(软关节限位/速度/力矩罚);

    • 条件丢弃 p≈0.1–0.2,便于 CFG。

  5. 优化

    • AdamW,lr 1e-4 左右,Cosine decay;混合精度;

    • 视觉增广(色偏/裁剪/噪点)提升泛化;

    • 早停看成功率/轨迹成本/接触稳定指标。


6) 在线推理与控制循环

单样本生成(最简)

  1. 读入当前观测 (V,L,proprio)(\mathbf{V},\mathbf{L},\text{proprio})(V,L,proprio);

  2. 从 N(0,I)\mathcal{N}(0,I)N(0,I) 采样动作噪声块 xT\mathbf{x}_TxT​;

  3. 反复 NFE(如 8 步)去噪 → 得到 a^t:t+H−1\hat{\mathbf{a}}_{t:t+H-1}a^t:t+H−1​;

  4. 执行前 k 步(k=1–H/2),t ← t+k,回到 1。

多样本+筛选(更稳)

  • 生成 M 个候选轨迹(并行),用成本网络/碰撞检查/达成度打分,选最好执行;

  • 软融合(平均前几条)提升平滑性。

安全与约束

  • 采样期间投影到力矩/速度界;

  • 末端避障快速检查;

  • 低通滤波/模型预测器补偿延迟。


7) 与其他策略的对比

  • vs 高斯回归 BC:DP 表达力强、抗多模态塌缩,接触/插拔/抓取更稳;

  • vs 自回归 Transformer:DP 误差不易积累,短 NFE 即可得长视野序列;

  • vs 经典 MPC:DP 以数据驱动方式直接学可行域与技巧,避免在线非凸优化,但欠物理可解释;

  • 可与 RL 融合:用 Q/成本引导、或离线 RL 数据混合演示,兼得可行与回报。


8) 关键超参与实践建议

  • Horizon:桌面操作 8–16;移动/长程 16–32。

  • NFE:4–10 足够;DPMSolver/UniPC/EDM 皆可。

  • CFG scale:1.5–3.0 常用;太大易过拟合指令忽略可行性。

  • 动作空间:优先 笛卡尔速度/姿态增量,再由解算器转关节,更平滑。

  • 同步:相机滞后要校正;动作-图像时戳对齐至关重要。

  • 数据多样性:同一指令多场景/多物体/多视角覆盖,VLA 才能稳泛化。


9) 简要伪代码

训练


python

复制编辑

for batch in D: # (imgs, text, proprio, action_seq) x0 = action_seq_normed # [B,H,Da] tau ~ Uniform(0,1) eps ~ N(0,I) xt = alpha(tau)*x0 + sigma(tau)*eps # encode conditions v_tok = VisionEncoder(imgs) # [B,Nv,D] l_tok = TextEncoder(text) # [B,Nl,D] cond = Fuse(v_tok, l_tok, proprio) # [B,Nc,D] # condition dropout for CFG cond_drop = DropoutCond(cond, p=0.2) eps_pred = Denoiser(xt, tau, cond_drop) # temporal U-Net / Transformer loss = mse(eps, eps_pred) + regs loss.backward(); opt.step()

推理(带 CFG、候选筛选)


python

复制编辑

def sample_actions(obs, text, proprio, M=4): cond = Fuse(VisionEncoder(obs), TextEncoder(text), proprio) c0 = EmptyCond() # for CFG cands = [] for m in range(M): x = randn_like(action_shape) for k in range(NFE): eps_c = Denoiser(x, t[k], cond) eps_0 = Denoiser(x, t[k], c0) eps_cf = eps_0 + s*(eps_c - eps_0) # CFG x = dpm_solver_step(x, eps_cf, t[k]) a = denorm(x) cands.append(a) best = argmin_over_cost(cands) # or learned Q/constraints return best[:k_exec]


10) 什么时候“像人一样理解指令”?

  • 当你的 VL 编码器来自大规模预训练(CLIP/ViT-G + 强语义文本编码器)并在机器人数据上微调后,策略对“颜色/类别/关系/方位”会有零样本-近零样本的迁移能力。

  • 如需更强的语言推理(长指令、多步骤),可把 LLM 的中间计划(如关键子目标)作为显式条件,再交给低层 DP 控制器去完成——这就是分层 VLA的一个实用路线。


结论一句话

Diffusion Policy把“未来一小段动作”当作一个要生成的对象,利用扩散模型强大的多模态条件生成与多模态分布拟合能力,让机器人在视觉与语言指令条件下,稳定地产生可行、平滑、目标一致的控制序列;配合价值/成本引导分层规划,能覆盖更长视野与更复杂任务。


需要我把这套 VLA-DP 方案按你的具体机器人(关节数、末端类型、控制频率、相机配置)落成一个最小可复现的训练/推理仓库骨架吗?我可以直接给你数据结构、模型定义和采样循环。

usage: control_robot.py [-h] [--config_path str] [--robot str] [--robot.type {aloha,koch,koch_bimanual,moss,so101,so100,stretch,lekiwi}] [--robot.gripper_open_degree str] [--robot.max_relative_target str] [--robot.ip str] [--robot.port str] [--robot.video_port str] [--robot.cameras str] [--robot.calibration_dir str] [--robot.leader_arms str] [--robot.follower_arms str] [--robot.teleop_keys str] [--robot.mock str] [--control str] [--control.type {calibrate,teleoperate,record,replay,remote_robot}] [--control.arms str] [--control.teleop_time_s str] [--control.single_task str] [--policy str] [--control.policy.type {act,diffusion,pi0,smolvla,tdmpc,vqbet,pi0fast}] [--control.policy.replace_final_stride_with_dilation str] [--control.policy.pre_norm str] [--control.policy.dim_model str] [--control.policy.n_heads str] [--control.policy.dim_feedforward str] [--control.policy.feedforward_activation str] [--control.policy.n_encoder_layers str] [--control.policy.n_decoder_layers str] [--control.policy.use_vae str] [--control.policy.n_vae_encoder_layers str] [--control.policy.temporal_ensemble_coeff str] [--control.policy.kl_weight str] [--control.policy.optimizer_lr_backbone str] [--control.policy.drop_n_last_frames str] [--control.policy.use_separate_rgb_encoder_per_camera str] [--control.policy.down_dims str] [--control.policy.kernel_size str] [--control.policy.n_groups str] [--control.policy.diffusion_step_embed_dim str] [--control.policy.use_film_scale_modulation str] [--control.policy.noise_scheduler_type str] [--control.policy.num_train_timesteps str] [--control.policy.beta_schedule str] [--control.policy.beta_start str] [--control.policy.beta_end str] [--control.policy.prediction_type str] [--control.policy.clip_sample str] [--control.policy.clip_sample_range str] [--control.policy.num_inference_steps str] [--control.policy.do_mask_loss_for_padding str] [--control.policy.scheduler_name str] [--control.policy.attention_implementation str] [--control.policy.num_steps str] [--control.policy.train_expert_only str] [--control.policy.train_state_proj str] [--control.policy.optimizer_grad_clip_norm str] [--control.policy.vlm_model_name str] [--control.policy.load_vlm_weights str] [--control.policy.add_image_special_tokens str] [--control.policy.attention_mode str] [--control.policy.prefix_length str] [--control.policy.pad_language_to str] [--control.policy.num_expert_layers str] [--control.policy.num_vlm_layers str] [--control.policy.self_attn_every_n_layers str] [--control.policy.expert_width_multiplier str] [--control.policy.min_period str] [--control.policy.max_period str] [--control.policy.n_action_repeats str] [--control.policy.horizon str] [--control.policy.image_encoder_hidden_dim str] [--control.policy.state_encoder_hidden_dim str] [--control.policy.latent_dim str] [--control.policy.q_ensemble_size str] [--control.policy.mlp_dim str] [--control.policy.discount str] [--control.policy.use_mpc str] [--control.policy.cem_iterations str] [--control.policy.max_std str] [--control.policy.min_std str] [--control.policy.n_gaussian_samples str] [--control.policy.n_pi_samples str] [--control.policy.uncertainty_regularizer_coeff str] [--control.policy.n_elites str] [--control.policy.elite_weighting_temperature str] [--control.policy.gaussian_mean_momentum str] [--control.policy.max_random_shift_ratio str] [--control.policy.reward_coeff str] [--control.policy.expectile_weight str] [--control.policy.value_coeff str] [--control.policy.consistency_coeff str] [--control.policy.advantage_scaling str] [--control.policy.pi_coeff str] [--control.policy.temporal_decay_coeff str] [--control.policy.target_model_momentum str] [--control.policy.n_action_pred_token str] [--control.policy.action_chunk_size str] [--control.policy.vision_backbone str] [--control.policy.crop_shape str] [--control.policy.crop_is_random str] [--control.policy.pretrained_backbone_weights str] [--control.policy.use_group_norm str] [--control.policy.spatial_softmax_num_keypoints str] [--control.policy.n_vqvae_training_steps str] [--control.policy.vqvae_n_embed str] [--control.policy.vqvae_embedding_dim str] [--control.policy.vqvae_enc_hidden_dim str] [--control.policy.gpt_block_size str] [--control.policy.gpt_input_dim str] [--control.policy.gpt_output_dim str] [--control.policy.gpt_n_layer str] [--control.policy.gpt_n_head str] [--control.policy.gpt_hidden_dim str] [--control.policy.dropout str] [--control.policy.mlp_hidden_dim str] [--control.policy.offset_loss_weight str] [--control.policy.primary_code_loss_weight str] [--control.policy.secondary_code_loss_weight str] [--control.policy.bet_softmax_temperature str] [--control.policy.sequentially_select str] [--control.policy.optimizer_vqvae_lr str] [--control.policy.optimizer_vqvae_weight_decay str] [--control.policy.n_obs_steps str] [--control.policy.normalization_mapping str] [--control.policy.input_features str] [--control.policy.output_features str] [--control.policy.device str] [--control.policy.use_amp str] [--control.policy.chunk_size str] [--control.policy.n_action_steps str] [--control.policy.max_state_dim str] [--control.policy.max_action_dim str] [--control.policy.resize_imgs_with_padding str] [--control.policy.interpolate_like_pi str] [--control.policy.empty_cameras str] [--control.policy.adapt_to_pi_aloha str] [--control.policy.use_delta_joint_actions_aloha str] [--control.policy.tokenizer_max_length str] [--control.policy.proj_width str] [--control.policy.max_decoding_steps str] [--control.policy.fast_skip_tokens str] [--control.policy.max_input_seq_len str] [--control.policy.use_cache str] [--control.policy.freeze_vision_encoder str] [--control.policy.freeze_lm_head str] [--control.policy.optimizer_lr str] [--control.policy.optimizer_betas str] [--control.policy.optimizer_eps str] [--control.policy.optimizer_weight_decay str] [--control.policy.scheduler_warmup_steps str] [--control.policy.scheduler_decay_steps str] [--control.policy.scheduler_decay_lr str] [--control.policy.checkpoint_path str] [--control.policy.padding_side str] [--control.policy.precision str] [--control.policy.grad_clip_norm str] [--control.policy.relaxed_action_decoding str] [--control.warmup_time_s str] [--control.episode_time_s str] [--control.reset_time_s str] [--control.num_episodes str] [--control.video str] [--control.push_to_hub str] [--control.private str] [--control.tags str] [--control.num_image_writer_processes str] [--control.num_image_writer_threads_per_camera str] [--control.resume str] [--control.repo_id str] [--control.episode str] [--control.root str] [--control.fps str] [--control.play_sounds str] [--control.log_interval str] [--control.display_data str] [--control.viewer_ip str] [--control.viewer_port str] control_robot.py: error: unrecognized arguments: --control.local_files_only=true
07-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值