
异常检测学习教程
文章平均质量分 83
人生半熟
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Datawhale 异常检测学习之Task05----高维度异常检测
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码原创 2021-01-24 21:52:30 · 427 阅读 · 0 评论 -
Datawhale 异常检测学习任务之Task04----基于相似度的方法
文章目录前言一、基于距离的方法1. 单元格方法2. 索引方法二、基于密度的方法三、LOF方法演示1.引入库2.生成数据3. LOF 模型检测4. 结果展示总结前言本文介绍异常检测的常用方法之基于相似度的方法,该方法属于传统方法之一。基于相似度的方法可以分为基于密度的方法和基于距离的方法两种。一、基于距离的方法【适用于各个集群的密度较为均匀的情况】该方法基于最近邻距离来定义异常值。前提假设-------异常点的 kkk 近邻距离要远大于正常点。嵌套循环法-------(1)..原创 2021-01-21 21:38:23 · 207 阅读 · 0 评论 -
Datawhale 异常检测之Task03----线性模型之PCA模型
文章目录前言一、PCA模型检测合成数据的异常值1. 导入库2. 利用pyod.data模块生成数据。3. 利用pyod.models.pca中的pca模型进行检测二、pca模型检测异常点总结前言本文主要演示利用pyod的pca模块对生成数据进行异常检测一、PCA模型检测合成数据的异常值1. 导入库import matplotlib.pyplot as pltimport pyod.utils.data as datafrom pyod.models.pca import PCA2. .原创 2021-01-18 21:58:47 · 380 阅读 · 0 评论 -
Datawhale 异常检测学习之Task02----基于统计学的方法
文章目录前言一、基于统计学的方法1. 参数方法1.1 一元数据的异常检测-----基于正态分布A. 方法步骤1.2 多元数据的异常检测2. 非参数方法2.1 直方图方法2.2 HBOS方法二、代码演示-----HBOS方法1.引入库2.读入数据总结前言上一篇简单介绍了异常检测的基本概念以及常用库pyod的使用。异常检测的方法主要有三大类:传统方法、集成方法和机器学习方法。传统方法又分为基于统计学的方法、基于相似度的方法和线性模型三种。本篇将主要介绍传统方法中基于统计学的方法一、基于统计学的.原创 2021-01-15 23:52:13 · 491 阅读 · 0 评论 -
Datawhale 异常检测学习之Task01----异常检测介绍(下)
文章目录前言一、pyod 安装二、常用API示例1.生成Toy example2.KNN模型示例总结前言学习pyod库的基本操作如何生成toy example了解训练、预测的apipyod 参考文档.一、pyod 安装利用pip安装或者github上直接下载,下载地址见总结。pip install pyod #安装库安装成功后导入库import pyodpyod基本模块介绍:import pyod.models #模块包含常用的异常检测模型import原创 2021-01-12 17:30:44 · 520 阅读 · 3 评论 -
Datawhale 异常检测学习之Task01----异常检测介绍(上)
文章目录前言一、什么是异常检测?二、异常检测常用的方法1.传统方法1.1 统计方法1.2 线性模型的方法1.3 基于相似度的方法2.集成方法3.机器学习的方法三、异常检测常用的开源库scikit-learnPyOD:总结前言Datawhale 异常检测学习之一Task01:异常检测介绍(2天)了解异常检测基本概念了解异常检测基本方法一、什么是异常检测?异常检测是指识别出与正常数据或者预测结果相差较大的数据。在金融、医疗、和工业上都有着重要的应用价值,常应用的场景有:故障检测、物联网.原创 2021-01-11 20:17:20 · 369 阅读 · 0 评论