#include <iostream>
using namespace std;
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
//注意递归函数有返回值时,每一个分支都要有return,不然会陷入卡死的地步
int digui(int n,int m)//n是待入栈的汽车数,m是待出栈的汽车数
{
if(n==0)//当待入栈数为0,就达成了一种方式
return 1;
if(m==0)
return digui(n-1,m+1);//当前待出栈数为0,就只能入栈了
else
return digui(n,m-1)+digui(n-1,m+1); //当待出栈汽车不为0时,有两种情况,1是继续把汽车入栈,2是将汽车出栈
}
long long jieshen(long long n)
{
if(n==1)
return 1;
return n*jieshen(n-1);
}
int main(int argc, char *argv[]) {
int ans=digui(16,0);
cout<<ans<<endl;
int h[20];
h[1]=1;
for(int n=2;n<=16;n++)
{
h[n]=h[n-1]*(4*n-2)/(n+1);//数组存储
}
cout<<h[16]<<endl;
//cout<<jieshen(25)<<endl;
return 0;
}
//这道题关键在于搞懂题意,搞懂题意后还是比较简单的。
/*
题意思路:有16辆车依次入栈,问出栈的顺序,在入栈的过程中,车有可能出栈也有可能不出栈(前题是栈里面有车才能出栈)
//递归,递推,或卡特兰数解决(详细介绍请自行百度)
*/
//卡特兰数:
/*
卡特兰数是一种经典的组合数,经常出现在各种计算中,其前几项为 : 1, 2, 5, 14, 42.....
h(0)=1,h(1)=1,h(2)=2,h(3)=5,h(4)=14....
递推公式:
1.1: 令h(0)=1,h(1)=1,catalan数满足递推公式: h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)。
1.2: 另一个递推公式:h[1]=1;h[n]=h[n-1]*(4*n-2)/(n+1).其中n表示数的个数。最好记住这个公式。
2. 通项公式1: h(n)=c(2n,n)-c(2n,n-1) (n=0,1,2,...)c(2n,n)是组合数 //阶乘太大,溢出
3. 通项公式2: h(n)=C(2n,n)/(n+1) (n=0,1,2,...) //阶乘太大,溢出
总结:阶乘超过25就long long都溢出了,所以太大的话要有递推公式或者递归。
*/
/*
标题:出栈次序
X星球特别讲究秩序,所有道路都是单行线。一个甲壳虫车队,共16辆车,按照编号先后发车,
夹在其它车流中,缓缓前行。
路边有个死胡同,只能容一辆车通过,是临时的检查站,如图【p1.png】所示。
X星球太死板,要求每辆路过的车必须进入检查站,也可能不检查就放行,也可能仔细检查。
如果车辆进入检查站和离开的次序可以任意交错。那么,该车队再次上路后,可能的次序有多少种?
为了方便起见,假设检查站可容纳任意数量的汽车。
显然,如果车队只有1辆车,可能次序1种;2辆车可能次序2种;3辆车可能次序5种。
现在足足有16辆车啊,亲!需要你计算出可能次序的数目。
这是一个整数,请通过浏览器提交答案,不要填写任何多余的内容(比如说明性文字)。
*/