【UIAVIT】UIA-ViT:Unsupervised Inconsistency-Aware Method based on VisionTransformer for Face ForgeryD

UIA-ViT: Unsupervised Inconsistency-Aware Method based on Vision Transformer for Face Forgery Detection

会议/期刊:ECCV 2022
作者:
在这里插入图片描述

背景

帧内不一致性已被证明对人脸伪造检测的推广是有效的。然而,学习关注这些不一致性需要额外的像素级伪造位置注释。

一些现有的方法生成具有位置注释的大规模合成数据,这些数据仅由真实图像组成,无法捕捉伪造区域的属性。其他人通过减去成对的真实和虚假图像来生成伪造位置标签,但这种成对的数据很难收集,生成的标签通常是不连续的。

points

【ViT+UPCL+PCWA】

仅使用视频级标签,可以在没有像素级注释的情况下学习不一致感知特征。

由于自注意机制,补丁嵌入之间的注意图自然地表示了一致性关系,使视觉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值