文章目录
UIA-ViT: Unsupervised Inconsistency-Aware Method based on Vision Transformer for Face Forgery Detection
会议/期刊:ECCV 2022
作者:
背景
帧内不一致性已被证明对人脸伪造检测的推广是有效的。然而,学习关注这些不一致性需要额外的像素级伪造位置注释。
一些现有的方法生成具有位置注释的大规模合成数据,这些数据仅由真实图像组成,无法捕捉伪造区域的属性。其他人通过减去成对的真实和虚假图像来生成伪造位置标签,但这种成对的数据很难收集,生成的标签通常是不连续的。
points
【ViT+UPCL+PCWA】
仅使用视频级标签,可以在没有像素级注释的情况下学习不一致感知特征。
由于自注意机制,补丁嵌入之间的注意图自然地表示了一致性关系,使视觉