【irregular swap】An Examination of Fairness of AI Models for Deepfake Detection

An Examination of Fairness of AI Models for Deepfake Detection

会议/期刊:IJCAI 2021
作者:
在这里插入图片描述

背景

早期的针对深伪数据集类别(种族、性别等)属性的研究
深度学习模型可以根据受保护的类别(如种族和性别)进行区分。

当一个人的脸被交换到另一个不同种族或性别的人时,用于创建deepfakes作为正训练信号的方法往往会产生“不规则”的脸。
这导致检测器学习前景脸和虚假之间的虚假相关性。

【在机器学习中,越来越多的人担心有偏见或有缺陷的系统会产生意想不到的后果,这需要对数据集和模型进行仔细彻底的检查。】

points

评估受保护的亚组中存在的深度伪造数据集和检测模型的偏见。亚组——》子组
使用按种族和性别平衡的面部数据集,检查三种流行的深度伪造检测器,发现不同种族的预测性能存在很大差异。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值