盛水、接雨水、加油站
Abstract
// 11. 盛最多水的容器 - 两根线之间的求面积 - 双指针从两边往中间走,每次移动矮的那根,下一次才有更有可能变大的可能性。
int maxArea(vector<int>& height);
// 84. 柱状图中最大的矩形 - 两根围成的面积受制于中间的高,所以和盛水的容器不一样
有点难
// 42. 接雨水 - 一维 - 所有洼地的总面积 - 每个洼地能解多少雨水 取决于,左右两边的围水高度和池塘底部高度
// 逐个计算每个位置能盛的水,怎么保证水能被拦住?短板决定水不会溢出!
int trap(vector<int>& height)
// 407. 接雨水 II - 二维, 需四个辅助矩阵?没你想的那么简单 TODO
int trapRainWater(vector<vector<int>>& heightMap);
// 134. 加油站 - 如有油总和有富裕,那我们总能找到一个多油的加油站出发,把全程跑完。遍历一次找到这个加油站即可
int canCompleteCircuit(vector<int>& gas, vector<int>& cost);
11. 盛最多水的容器
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。
class Solution:
def maxArea1(self, height: List[int]) -> int:
"""
@note 暴力法,遍历所有可以盛水的容器, 49 / 61 个通过的测试用例
"""
n = len(height)
vol_arrary = [[0] * n for _ in range(n)]
res = 0
for i in range(0, n):
for j in range(i+1, n):
w = j - i
h = min(height[i], height[j])
vol_arrary[i][j] = w * h
res = max(res, vol_arrary[i][j])
return res
def maxArea2(self, height: List[int]) -> int:
"""
@note 动态规划-key 在左右边界往里缩的时候,让短板边长,才有使盛水量变多的可能
array[i][j] = w * h, h = min(height[i], height[j])
每次移动短板,有效成水高度h 有变大的可能, 面积可能会变大
每次移动高板,有效成水高度h, 不变/变小 面积一定变小
"""
n = len(height)
left, right = 0, n-1
res = 0
while(left < right):
vol = (right - left) * min(height[left], height[right])
res = max(res, vol)
if height[left] <= height[right]:
left += 1
else:
right -= 1
return res
84. 柱状图中最大的矩形
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。求在该柱状图中,能够勾勒出来的矩形的最大面积。
1.暴力法
两柱子间矩形的高由他们之间的最矮的柱子决定。因此可以遍历所有两两柱子形成矩形的面积。求一个最大值o(n^3)。94/96
class Solution(object):
def largestRectangleArea(self, heights):
"""
:type heights: List[int]
:rtype: int
"""
n=len(heights)
if n==0:
return 0
res=max(heights)
#print(res)
for i in range(n):
for j in range(i+1,n):
h=min(heights[i:j+1])
s=h*(j-i+1)
#print(h,j-i+1,s)
res=max(res,s)
return res
2.优化暴力
每次求最低柱子的时候不用全部求最小,只要用新加进来的柱子和当前的比较求最小就可以了。 o ( n 2 ) o(n^2) o(n2)还是不过94/96
class Solution(object):
def largestRectangleArea(self, heights):
"""
:type heights: List[int]
:rtype: int
"""
n=len(heights)
if n==0:
return 0
res=max(heights)
#print(res)
for i in range(n):
h=heights[i]
for j in range(i+1,n):
h=min(h,heights[j])
s=h*(j-i+1)
#print(h,j-i+1,s)
res=max(res,s)
return res
2.分治
最大矩形的面积存在三种情况
1.确定了最矮柱子之后,矩形尽可能往两边扩展
2.最矮柱子左边最大面积矩形
3.最矮柱子右边最大面积矩形 95/96
class Solution(object):
def largestRectangleArea(self, heights):
"""
:type heights: List[int]
:rtype: int
"""
n=len(heights)
if n==0:
return 0
def calculateArea(heights,s,e):
if s>e:
return 0
min_index=s
for i in range(s,e+1):
if heights[i]<heights[min_index]:
min_index=i
le_area=calculateArea(heights,s,min_index-1)
ri_area=calculateArea(heights,min_index+1,e)
mi_area=heights[min_index]*(e-s+1)
return max(mi_area,le_area,ri_area)
res=calculateArea(heights,0,n-1)
return res
4.优化分治
Segment tree solution 分段树的解法,这是什么鬼
5.堆栈
-1 放进栈的顶部来表示开始
初始化时,按照从左到右的顺序,不断将柱子的下标放进栈中,直到遇到相邻柱子呈下降关系,也就是 a[i-1] > a[i]a[i−1]>a[i]。现在,我们开始将栈中的序号弹出,直到遇到 stack[j]stack[j] 满足
a
[
s
t
a
c
k
[
j
]
]
≤
a
[
i
]
a
[
s
t
a
c
k
[
j
]
]
≤
a
[
i
]
a\big[stack[j]\big] \leq a[i]a[stack[j]]≤a[i]
a[stack[j]]≤a[i]a[stack[j]]≤a[i]
每次我们弹出下标时,我们用弹出元素作为高形成的最大面积矩形的宽是当前元素与 stack[top-1]之间的那些柱子
class Solution(object):
def largestRectangleArea(self, heights):
"""
:type heights: List[int]
:rtype: int
"""
n=len(heights)
if n==0:
return 0
s=[-1]
res=0
for i in range(n):
while(s[-1]!=-1 and heights[s[-1]]>=heights[i]):
h=heights[s.pop()]
area=h*(i-s[-1]-1)
res=max(res,area)
s.append(i)
while(s[-1]!=-1):
h=heights[s.pop()]
area=h*(n-s[-1]-1)
res=max(res,area)
return res
42. 接雨水
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
class Solution {
public:
int trap(vector<int>& height) {
// 么个位置能解多少雨水,主要取决于,左右两边的高度,中低的那个
// 逐个计算,怎么保证水能被拦住,不溢出呢
int n = height.size();
vector<int> left_max(n, height[0]);
vector<int> right_max(n, height[n-1]);
for (int i = 1; i < n; i++) {
left_max[i] = max(left_max[i-1], height[i]);
right_max[n-1-i] = max(right_max[n-i], height[n-1-i]);
}
int res = 0;
for (int i = 0; i < n; i++) {
res += min(left_max[i], right_max[i]) - height[i];
}
return res;
}
};
407. 接雨水 II - TBD
给你一个 m x n 的矩阵,其中的值均为非负整数,代表二维高度图每个单元的高度,请计算图中形状最多能接多少体积的雨水。
134. 加油站
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
如果题目有解,该答案即为唯一答案。
输入数组均为非空数组,且长度相同。
输入数组中的元素均为非负数。
示例 1:
输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入:
gas = [2,3,4]
cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周
暴力 o(N^2)
受示例2启发,可以采用遍历加油站数组,判断从每一个gas[i]出发能否环公路行驶一周。
从加油站 i 出发时,每到一个加油站判断,油量是否够跑到下一个加油站,若无法到达,则加油站 i 出发的策略不可行,判断下一个加油站的可行性。
判断条件:(当前的油量=剩余油量+能获取的油量)<(到下一个加油站要消耗的油量:cost[i])无法到达
class Solution(object):
def canCompleteCircuit(self, gas, cost):
"""
:type gas: List[int]
:type cost: List[int]
:rtype: int
"""
cur=0
flag=0
res=-1
for i,var in enumerate(gas):
cur = 0
for j in range(0,len(gas)):
ind=int((i+j)%len(gas))
cur=cur+gas[ind]
if cur-cost[ind]<0:
break
cur=cur-cost[ind]
if j==len(gas)-1:
flag=1
if flag==1:
return i
return res
31个用例,过了30个,超出时间限制!!!
贪心 o(n)
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int n = gas.size();
int cur_oil = 0, total_oil = 0;
int start = 0;
for (int i = 0; i < n; i++) {
if (cur_oil < 0) {
start = i;
cur_oil = 0;
}
cur_oil += gas[i] - cost[i];
total_oil += gas[i] - cost[i];
}
if (total_oil < 0) { // 如有总和有富裕,那我们总能找到一个多油的加油站出发,把全程跑完
return -1;
} else {
return start; // 找到这个加油站,仅需遍历一次数组
}
}
};