高光谱分类论文解读分享之基于多模态融合Transformer的遥感图像分类方法

IEEE TGRS 2023:基于多模态融合Transformer的遥感图像分类方法

题目

Multimodal Fusion Transformer for Remote Sensing Image Classification

作者

Swalpa Kumar Roy , Student Member, IEEE, Ankur Deria , Danfeng Hong , Senior Member, IEEE,
Behnood Rasti , Senior Member, IEEE, Antonio Plaza , Fellow, IEEE, and Jocelyn Chanussot ,Fellow, IEEE

关键词

Convolutional neural networks (CNNs), multihead cross-patch attention (mCrossPA), remote sensing (RS), vision transformer (ViT).

研究动机

在原始的ViT模型中,如果我们将HSI作为输入,由于HSI巨大的光谱波段数量,可能会导致过拟合;并且对于其他模态的融合,如果采用拼接的方式去实现信息互补,会加剧这种问题。

模型

在这里插入图片描述
与卷积神经网络相比,ViT在图像分类任务中具有良好的性能。因此,许多研究人员尝试将ViT应用到高光谱图像分类任务中。为了获得满意的性能,接近于CNN,变换需要更少的参数。VITS和其他类似的变换使用外部分类(CLS)标记,该标记是随机初始化的,通常不能很好地推广,而其他多模

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值