自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(407)
  • 资源 (3)
  • 收藏
  • 关注

原创 TABFPN:A TRANSFORMER THAT SOLVES SMALLTABULAR CLASSIFICATION PROBLEMS IN A SECOND(一)

引用格式:Hollmann N, Müller S, Eggensperger K, et al. Tabpfn: A transformer that solves small tabular classification problems in a second[J]. arXiv preprint arXiv:2207.01848, 2022.引用次数:186。

2025-07-30 08:00:00 1690

原创 TABFPN:A TRANSFORMER THAT SOLVES SMALLTABULAR CLASSIFICATION PROBLEMS IN A SECOND(二)

引用格式:Hollmann N, Müller S, Eggensperger K, et al. Tabpfn: A transformer that solves small tabular classification problems in a second[J]. arXiv preprint arXiv:2207.01848, 2022.引用次数:186我们的方法建立在先验数据拟合网络(PFNs;见第2节),

2025-07-30 08:00:00 804

原创 人 工 智 能 赋 能 情 报 研 究 的 变 革 与 发 展(四)

人工智能赋能情报研究的发展趋势随着大模型技术的迅猛发展, 人工智能技术正在迎来新一轮的发展浪潮,人工智能技术在情报研究中应用的广度和深度都将持续增加。 具体而言, 人工智能赋能情报研究总体上呈现以下 3 个趋势。(1)由单模态向多模态情报数据融合发展(2) 由工具辅助向人机协同方向发展(3)由情报感知智能向情报认知智能发展

2025-07-29 08:00:00 800

原创 人 工 智 能 赋 能 情 报 研 究 的 变 革 与 发 展(五)

5 人工智能赋能情报研究的思考建议当前, 以ChatGPT 为特征的人工智能新技术向情报研究赋能已是大势所趋, 情报研究必然会迎来方式、 方法、 模式等全方位的范式变革。 在此背景之下, 情报研究工作必须守正创新, 积蓄多方面能力, 积极应对挑战, 构建人工智能向情报研究赋能的变革之路。

2025-07-29 08:00:00 1136

原创 人 工 智 能 赋 能 情 报 研 究 的 变 革 与 发 展(二)

智能技术的发展为其在情报领域的应用提供了强有力的支持和保障, 情报领域的专家学者在延续机器学习研究的基础上, 向深度学习、 神经网络、自然语言处理等多方面拓展, 特别是以C 为代表的生成式人工智能技术成为情报领域关注的热点。

2025-07-28 08:00:00 1760

原创 人 工 智 能 赋 能 情 报 研 究 的 变 革 与 发 展(三)

需求牵引与技术推动是情报研究长期以来所坚持的两个基本原则。 人工智能赋能情报研究本质也是 “ 技术推动” 与 “ 业务需求牵引” 的有机结合。赋能效应主要通过将人工智能相关技术手段嵌入情报研究的主要流程环节,推动高价值情报数据的全面获取、 挖掘和有效分析, 加速从信息空间到认知空间的映射转化, 全面驱动情报研究模式发生深层次变革重塑。 与此同时,业务实践反向回馈技术研发, 促进人工智能技术迭代并在更深层次推开新的实践探索[68] 。 关于情报研究流程环节的表述有很多, 本文重点从情报需求理解、 情报数据挖掘

2025-07-28 08:00:00 941

原创 基于大型语言模型的中文短文本实体链接方法(三)

该研究提出了一种基于大型语言模型的中文短文本实体链接方法EL-LLM。通过在AIDA、WNED-WIKI等5个公开数据集上的实验,EL-LLM在准确率、召回率和F1分数上均优于BLINK、BERT-CRF等基线模型,尤其在中文CCKS数据集上F1值达91.2%。消融实验表明注意力机制优化和上下文消歧损失函数对性能提升贡献显著。该方法有效解决了中文短文本中多义词和上下文不足的挑战,为实体链接任务提供了新思路。未来可进一步优化微调策略和上下文建模方法。

2025-07-27 08:00:00 615

原创 人 工 智 能 赋 能 情 报 研 究 的 变 革 与 发 展(一)

机器学习、 深度学习、 生成式人工智能等人工智能技术迅猛发展, 为情报研究带来空前的机遇。 在人工智能技术的赋能下, 情报研究领域的思维方式、 任务分工、 研究范式等将发生深层次重塑变革, 如何利用技术红利最大化赋能情报研究领域成为当前的重要议题。 文章首先探讨了人工智能赋能情报研究的变革意义, 再分别从技术视角和业务视角综述人工智能赋能情报研究的进展, 并对人工智能赋能情报研究的未来发展趋势进行展望,最后从核心理念、 数据积累、 人才储备、 技术创新等方面进行考量, 提出未来更好地将人工智能技术融入情报研

2025-07-27 08:00:00 674

原创 Fast and Continual Knowledge Graph Embedding via Incremental LoRA(五)

本文提出了一种快速持续知识图谱嵌入框架FastKGE,采用增量LoRA(IncLoRA)机制来缓解灾难性遗忘并加速微调。通过图分层实现新旧知识的分离存储,并引入自适应秩分配的增量低秩适配器学习方法降低训练成本。该方法在保持已有知识的同时有效学习新知识,为动态增长知识图谱的嵌入学习提供了高效解决方案。未来将进一步探索知识被修改或遗忘情况下的持续学习机制。

2025-07-26 08:15:00 472

原创 基于大型语言模型的中文短文本实体链接方法(一)

本文提出了一种基于大型语言模型的中文短文本实体链接方法EL-LLM,针对中文短文本中存在的多义词、上下文信息不足等挑战,结合Baichuan2-7B大语言模型和实体链接优化策略。通过两阶段微调(预微调和任务特定微调)增强模型在实体识别和消歧方面的能力,并引入注意力机制优化和上下文消歧损失函数。在多个数据集上的实验表明,EL-LLM在准确率、召回率和F1分数上均优于基线模型,尤其在处理高歧义性实体时表现突出。该方法为中文短文本实体链接问题提供了有效解决方案,并为相关研究提供了参考。

2025-07-26 08:00:00 816

原创 基于大型语言模型的中文短文本实体链接方法(二)

本文提出EL-LLM模型,针对中文短文本实体链接任务中上下文信息不足、实体歧义性强等问题,结合Baichuan2-7B大语言模型进行优化。通过两阶段微调(预微调与任务特定微调)提升模型性能,构建包含2000条标注数据的训练集,并引入注意力机制优化。模型采用先验知识与BLINK检索相结合的候选实体生成策略,通过上下文分析和消歧实现精准链接。实验表明该方法有效提升了中文短文本实体链接的准确性。

2025-07-26 08:00:00 1321

原创 Fast and Continual Knowledge Graph Embedding via Incremental LoRA(三)

本文提出了一种基于增量低秩适配器(IncLoRA)的快速持续知识图谱嵌入方法FastKGE。该方法通过将新增知识分层处理,并为不同重要性的实体分配自适应秩的LoRA模块,有效降低了动态知识图谱的存储和计算成本。具体实现包括三个关键步骤:1)基于与旧图距离和节点中心性对新增实体进行分层;2)采用增量LoRA学习机制为各层分配自适应秩;3)组合所有LoRA模块进行推理。实验表明,该方法在保持良好性能的同时显著提升了训练效率。该研究为大规模动态知识图谱的高效嵌入提供了新的解决方案。

2025-07-25 08:00:00 453

原创 Fast and Continual Knowledge Graph Embedding via Incremental LoRA(四)

本文提出了一种基于增量LoRA(IncLoRA)的快速持续知识图谱嵌入方法FastKGE,通过动态调整低秩适配器来有效捕获知识图谱的增量变化。实验在6个数据集(包括新构建的FB-CKGE和WN-CKGE)上验证了该方法的有效性,结果显示FastKGE相比现有基线在训练时间上节省34%-68%,同时在MRR、Hits@1等指标上提升0.4%-2.8%。消融实验证实了增量LoRA学习和图分层策略的关键作用,案例研究进一步展示了该方法在关键实体学习上的优势。该方法为大规模知识图谱的持续学习提供了高效解决方案。

2025-07-25 08:00:00 995

原创 Fast and Continual Knowledge Graph Embedding via Incremental LoRA(二)

《Fast and Continual Knowledge Graph Embedding via Incremental LoRA》提出了一种基于增量LoRA的持续知识图谱嵌入方法(IncLoRA)。该方法通过增量低秩适配器(LoRA)模块,在知识图谱动态演化过程中高效整合新知识,同时避免灾难性遗忘。与传统的全参数微调或架构调整方法不同,IncLoRA采用参数高效的方式,在保留历史知识的前提下,仅需调整少量参数即可适应新增知识。实验表明,该方法在训练效率和知识保留方面均优于现有持续学习方案,为动态知识图谱

2025-07-24 09:07:35 595

原创 Fast and Continual Knowledge Graph Embedding via Incremental LoRA(一)

本文提出FastKGE框架实现连续知识图谱嵌入(CKGE),通过增量低秩适配器(IncLoRA)平衡新知识学习与旧知识保留。创新性地将LoRA机制引入CKGE领域,将新知识存储在低秩适配器中,显著降低训练成本。实验表明,在4个公开数据集上训练时间减少34%-49%的同时保持21.0%的平均MRR性能;在新构建的FB-CKGE和WN-CKGE数据集上训练时间减少51%-68%,性能提升1.5%。该研究首次实现低秩适配器在CKGE中的应用,并发布了两个大规模初始知识图谱的新数据集。

2025-07-24 09:00:07 575

原创 A Survey of Knowledge Graph Reasoning onGraph Types: Static, Dynamic, and Multi-Modal(七)

本文综述了知识图谱推理(KGR)技术的最新研究进展,系统梳理了静态、时序和多模态三类知识图谱的推理方法,并提出了双层分类体系(图类型+技术场景)。文章指出当前KGR面临的七大挑战:分布外推理、大规模推理、多关系推理、多模态推理、可解释推理、实际应用落地,以及与大型语言模型(LLM)的协同。针对每个挑战,作者分析了现有解决方案的局限性和改进方向,例如采用小样本学习处理未见关系、图聚类优化大规模推理、自适应融合多模态信息等。研究还开源了包含180个KGR模型和67个数据集的资源库。未来研究方向包括开发更细粒度的

2025-07-23 10:45:50 957

原创 A Survey of Knowledge Graph Reasoning onGraph Types: Static, Dynamic, and Multi-Modal(六)

该论文系统综述了知识图谱推理领域的各类基准数据集,包括静态、时序和多模态三种类型。研究团队通过GitHub仓库(https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning)整理了53个静态数据集(38个直推式和15个归纳式)、18个时序数据集和11个多模态数据集。其中,静态数据集包含经典资源如Freebase、DBpedia、WordNet等;时序数据集涵盖政治事件(ICEWS)、电影(IMDB)等时效性数据;多模态数据集则整合了文本、图像等

2025-07-23 10:45:30 558

原创 Uncertainty Quantification Metrics for Deep regression(一)

当在机器人或其他物理系统上部署深度神经网络时,学习到的模型应该可靠地量化预测的不确定性。一个可靠的不确定性允许下游模块推理其行动的安全性。在这项工作中,我们解决了不确定性量化的指标。具体来说,我们关注于回归任务,并研究了稀疏化误差下的面积(AUSE)、校准误差(CE)、斯皮尔曼的等级相关性和负对数似然(NLL)。使用综合回归数据集,我们研究了这些指标在四种典型的不确定性类型下的表现,它们关于测试集大小的稳定性,并揭示了它们的优缺点。我们的结果表明,

2025-07-22 09:19:45 1089

原创 Uncertainty Quantification Metrics for Deep regression(四)

所有度量都随着测试集大小的增加而变化,最终收敛于期望。我们可以得出结论,所有度量收敛超过。因此,对于大多数现代回归应用程序,其中测试数据集大于∼1000个样本,稳定性不应该引起关注。虽然度量的振幅彼此不同,但我们也可以得出这样的结论:CE是最稳定,AUSE收敛速度第二快

2025-07-22 09:19:14 725

原创 Uncertainty Quantification Metrics for Deep regression(三)

本文提出了一种用于深度回归的不确定性量化方法,通过构建四个具有不同不确定性来源的合成数据集(同方差、异方差、多模态和认知集)进行实验评估。研究比较了基于能量回归(EBR)和深度集成(DE)两种模型在不同测试集规模下的稳定性表现,结果表明所有指标都能随着数据量增加收敛到期望值。实验还分析了两种模型在四种不确定性类型下的性能表现,并与数据生成分布的参考结果进行对比。该研究为深度回归模型的不确定性量化提供了新的评估框架和实证依据。

2025-07-22 09:17:17 685

原创 Uncertainty Quantification Metrics for Deep regression(二)

本文综述了深度回归中的不确定性量化方法,重点分析了两种不确定性类型(任意和认知不确定性)及四种评估指标(AUSE、CE、Spearman相关性和NLL)。研究比较了深度集成(DE)和基于能量的回归(EBR)两种模型在不确定性预测中的表现。结果表明,这些指标能有效评估预测可靠性与真实误差的吻合程度,其中NLL因其严格适当的评分特性表现突出。该工作为选择合适的不确定性评估方法提供了理论依据,对提高深度学习模型的可靠性具有重要意义。

2025-07-22 09:15:21 955

原创 Energy-Based Models forDeep Probabilistic Regression(四)

【摘要】本文提出了一种基于能量模型的深度概率回归方法,通过深度神经网络(DNN)预测非归一化目标密度,实现条件目标密度建模。该方法通过最小化负对数似然进行训练,采用蒙特卡洛重要性采样近似配分函数,并在测试时通过梯度上升优化DNN输出。实验在目标检测、视觉跟踪、年龄估计和头部姿态估计四个计算机视觉任务上验证了方法的有效性。结果显示,该方法在COCO数据集上显著优于Faster-RCNN和IoU-Net,在视觉跟踪任务中优于ATOM跟踪器,并在年龄和头部姿态估计任务中持续提升基线性能。该方法具有通用性、概念简洁

2025-07-21 09:37:30 1088

原创 A Survey of Knowledge Graph Reasoning onGraph Types: Static, Dynamic, and Multi-Modal(五)

本文综述了多模态知识图谱推理(KGR)的最新研究进展。文章系统性地介绍了32个多模态KGR模型,将其分为基于Transformer的模型和Transformer无关模型两类。前者利用预训练Transformer实现多模态特征融合,后者则通过扩展单模态KGR模型来编码多模态信息。研究显示,多模态KGR仍处于早期发展阶段,仅占KGR模型的18%。当前趋势是从静态KGR模型转向基于预训练Transformer的统一学习框架,这更符合通用人工智能的需求。本文还比较了各类模型在标准数据集上的性能,并指出该领域仍存在广

2025-07-21 09:35:05 1177

原创 A Survey of Knowledge Graph Reasoning onGraph Types: Static, Dynamic, and Multi-Modal(四)

本文综述了时态知识图谱推理(KGR)模型,系统分析了58种模型并将其分为基于RNN的模型(包括基础RNN、LSTM和GRU增强模型)和与RNN无关的模型(时间向量引导和时间操作引导模型)。研究发现,基于RNN的模型更擅长建模时序信息,适合外推推理;而与RNN无关的模型则更具灵活性。当前外推推理研究仅占30%,仍有较大发展空间。实验表明,基于RNN和时间操作的模型在插值和外推场景中均表现良好,是最具前景的研究方向。论文提供了代码链接供进一步研究参考。

2025-07-21 09:06:20 1141

原创 A Survey of Knowledge Graph Reasoning onGraph Types: Static, Dynamic, and Multi-Modal(三)

(1)基于嵌入的模型普遍具有较好的表达能力,但缺乏可解释性。同时,由于KGR模型需要对关系事实和图结构进行高质量的表示,最适合GNN模型,因此目前基于GNN的模型开发成为研究热点。(2)基于路径和基于规则的模型比基于嵌入的模型具有更好的可解释性,但通常存在表达能力有限和时空复杂度高的问题。(3)基于路径的模型由于路径搜索方式的不同更适合于直推式推理,而基于规则的模型由于规则范式的泛化性自然地继承了归纳能力。(4)长期以来,直推式推理模型不断出现,对学术研究和工业应用产生了巨大影响。然而,由于可扩

2025-07-19 16:59:34 923

原创 A Survey of Knowledge Graph Reasoning onGraph Types: Static, Dynamic, and Multi-Modal(二)

本文系统综述了知识图谱推理(KGR)在不同图谱类型(静态、时序、多模态)下的研究进展。首先明确定义了三种知识图谱:静态KG(三元组)、时序KG(时间序列快照)和多模态KG(含视觉等模态)。其次,针对不同类型KG提出了相应的推理任务:静态KG侧重实体/关系预测,时序KG关注时间点推理,多模态KG需融合跨模态信息。文章设计了一个双层分类法,第一层按图谱类型分类,第二层基于技术方法(如嵌入模型、路径推理等14类)和推理场景(直推/归纳、插值/外推)进行细分。通过这种系统分类,为知识图谱推理研究提供了结构化分析框架

2025-07-19 16:59:08 528

原创 Energy-Based Models forDeep Probabilistic Regression(三)

我们提出了一种通用的和概念上简单的回归方法,具有明确的概率解释。在第3.2节中,我们介绍了我们的。总的来说,与直接回归基线相比,推理速度有所降低,但与基于置信度的方法,如[28]IoU-Net方法相同。在实践中,我们发现与直接回归基线相比,我们的训练策略没有增加任何显著的开销,并且计算成本与基于置信度的方法相同。在一些任务中,如图像-坐标回归,这自然是通过网格近似来完成的,利用由全卷积网络获得的密集预测。在模糊或不确定的情况下,DNN可以在各处输出小值,或在多个假设下输出大值,但代价是付出更高的损失。

2025-07-18 15:38:13 880

原创 Energy-Based Models forDeep Probabilistic Regression(二)

引用量:67 在监督回归中,任务是学习预测目标值y?∈Y来自一个相应的输入x?∈X,给定一个i.i.d.的训练集输入目标示例,D = {(xi,yi)} N i=1,(xi,yi)∼p(x,y)。与分类相反,目标空间Y是一个连续的集合,例如Y = R K。在计算机视觉中,输入空间X通常对应于图像的空间,而输出空间Y依赖于手头的任务。常见的例子包括图像坐标回归[64,34]中的Y = R 2,年龄估计[55,49]中的Y = R+,以及对象边界框回归[54,28]中的Y = R 4。各种技术以前已经被应用于监

2025-07-17 09:02:02 956

原创 GraphGeo代码理解

GraphGeo模型通过整合IP主机知识、网络测量数据和拓扑信息预测IP地理位置。其损失函数包含三部分:1)位置预测损失(距离平方和);2)自监督正则化损失(优化图结构);3)变分推断损失(ELBO)处理不确定性。模型使用GNN特征聚合,通过优化ELBO(包含重构损失和KL散度)来计算负对数似然(NLL),实现不确定性建模。梯度回传同时优化预测精度和图结构质量,最终输出包含经纬度及其预测方差,提升预测的鲁棒性。

2025-07-17 09:01:26 802

原创 A Survey of Knowledge Graph Reasoning onGraph Types: Static, Dynamic, and Multi-Modal(一)

本文综述了知识图谱推理(KGR)的最新研究进展,系统梳理了基于不同图类型的推理模型。根据知识图谱的信息类型,将现有KGR模型分为静态模型、时序模型和多模态模型三类,提出双层分类体系(图类型+技术与场景)。相较于以往仅关注静态KGR的综述,本文首次全面涵盖了时序和多模态知识图谱的推理方法,详细分析了各模型的优缺点及适用场景。同时整理了相关性能指标、典型数据集,并指出该领域面临的挑战与发展机遇。为促进研究,作者开源了包含180个先进模型和67个数据集的资源库。该综述为知识图谱推理研究提供了系统性参考。

2025-07-16 19:59:00 1051

原创 Simple and Scalable Predictive UncertaintyEstimation using Deep Ensembles(五)

本文提出了一种使用深度集成方法进行预测不确定性估计的简单可扩展方案。研究表明,传统最小化均方误差(MSE)的方法会导致不确定性低估,而通过学习预测方差可获得更校准的结果。在回归任务中,该方法能产生准确反映真实不确定性的预测区间;在分类任务中,通过置信度和分歧度两个指标验证了其能有效捕捉预测模糊性。实验表明,深度集成方法在不确定性估计方面优于MC-dropout和对抗训练等基线方法。该工作为神经网络预测提供了可靠的不确定性量化框架。

2025-07-16 10:46:52 573

原创 Simple and Scalable Predictive UncertaintyEstimation using Deep Ensembles(四)

本文提出了一种简单可扩展的深度集成方法用于预测不确定性估计。该方法通过训练多个独立神经网络并集成其预测,同时结合对抗训练来捕获数据模糊性和模型不确定性。实验表明,仅需5个模型即可显著提升不确定性估计质量。相比贝叶斯方法,这种非贝叶斯方案在保持性能的同时更易于实现和并行化,适用于各类网络架构。作者还探讨了通过去相关网络、优化集成权重等改进方向,为不确定性估计研究提供了新思路。

2025-07-16 10:45:50 546

原创 Simple and Scalable Predictive UncertaintyEstimation using Deep Ensembles(三)

本文提出了一种简单且可扩展的深度集成方法进行预测不确定性估计。通过分类和回归任务实验验证,该方法在负对数似然(NLL)等指标上优于概率反向传播(PBP)和MC-dropout等现有方法。实验表明:(1)使用NLL学习方差能改善不确定性预测;(2)集成方法显著提升性能,尤其在远离训练数据的区域;(3)对抗性训练在分类任务中有效提高准确性;(4)深度集成对未知类别的测试样本能产生更合理的不确定性估计,避免过度自信的错误预测。在ImageNet等真实数据集上,随着集成规模的增大,预测准确性和不确定性质量均有显著提

2025-07-16 10:45:29 805

原创 Simple and Scalable Predictive UncertaintyEstimation using Deep Ensembles(一)

深度神经网络(NNs)是一种强大的黑盒预测器,最近在广泛的任务上取得了令人印象深刻的性能。量化神经网络的预测不确定性是一个具有挑战性但尚未解决的问题。贝叶斯神经网络(Bayesian neural networks),学习权重分布,是目前估计预测不确定性的最先进技术;然而,这些需要对训练过程进行重大的修改,而且与标准(非贝叶斯)神经网络相比,它们在计算上很昂贵。我们提出了一种替代贝叶斯神经网络的方法,它易于实现,易于并行化,只需要很少的超参数调优,并产生高质量的预测不确定性估计。

2025-07-16 09:14:02 924

原创 Energy-Based Models forDeep Probabilistic Regression(一)

值得注意的是,我们的模型在COCO数据集上的目标检测方面比Faster-RCNN实现了2.2%的AP改进,并在应用于边界盒估计时设置了一种新的最先进的视觉跟踪。在这种直接回归方法中,DNN的模型参数是通过最小化一个损失函数来学习的,例如L2或L1 loss,惩罚预测的目标值和真实值之间的差异。与基于置信度的方法相比,我们的方法不需要伪标签,受益于清晰的概率解释,并直接适用于各种计算机视觉应用。我们的方法被发现显著优于直接回归基线,以及流行的基于概率和基于置信度的替代方案,包括最先进的。

2025-07-16 09:12:18 748

原创 Simple and Scalable Predictive UncertaintyEstimation using Deep Ensembles(二)

《深度集成:一种简单可扩展的预测不确定性估计方法》提出使用神经网络集成来估计预测不确定性。该方法包含三个关键要素:(1)采用适当的评分规则(如负对数似然)作为训练目标;(2)通过对抗训练平滑预测分布;(3)训练多个随机初始化的神经网络并集成输出。在回归任务中,网络输出预测均值和方差;分类任务则平均各网络的预测概率。实验表明,该方法优于传统的单一网络不确定性估计,且无需数据重采样即可获得良好效果。该方法计算高效,适用于并行训练,为深度学习中的不确定性量化提供了实用解决方案。

2025-07-15 09:41:19 858

原创 实现高效、可靠的基于骨骼的人体姿态建模(第三章 学习视角-对比交叉视角互信息最大化的人体姿态表示)

理解人类的姿态和动作是计算机视觉中的一个基本问题,因为它在现实世界中的广泛应用,如视频内容分析、智能摄影、AR/VR技术和人机界面。最近,深度学习方法[100,101,102,33,29]取得了显著的改进。然而,这些数据驱动的方法通常很容易受到观点变化的影响。特别是,在测试时间内看不见的视点往往会导致识别性能[103]的显著下降。为了缓解这一问题,人们提出了交叉视图动作识别[103]的方法,其中模型使用同时从不同视点捕获的一组动作进行训练,以便它们可以应用于测试时训练中看不到的新视图。

2025-07-15 09:37:20 1040

原创 实现高效、可靠的基于骨骼的人体姿态建模(第二章 基于三维人体姿态回归的语义图卷积网络)

卷积神经网络(CNNs)已经成功地解决了经典的计算机视觉问题,如图像分类[4,35,36]、目标检测[37,6,8,7]和生成[38,12,10,33],其中输入图像具有网格状结构。然而,许多现实世界的任务,如分子结构、社会网络和三维网格,只能以不规则结构的形式表示,其中卷积神经网络的应用有限。为了解决这一限制,图卷积网络(GCNs)[39,40,41]最近被引入,作为卷积神经网络的一种泛化,可以直接处理一般类别的图。

2025-07-14 18:13:43 543

原创 实现高效、可靠的基于骨骼的人体姿态建模(摘要及介绍)

由于深度神经网络在日常生活中的广泛应用,理解人类行为一直是计算机视觉的中心任务。现有的研究已经探索了学习人体姿态的强大特征表示的各种模式,如RGB帧、光流、深度图像和人类骨骼。其中,基于骨架的姿态表示由于其动作聚焦性、紧凑性和域不变性而受到越来越多的关注。然而,普遍的基于骨架的算法通常在网络参数或训练数据上效率低效,但在人类行动预测问题上也不可靠。在本文中,我们探讨了基于骨骼的人类动作建模的好处和挑战,并提供了新的解决方案,以实现在人类动作估计、识别和生成任务中的高效和可靠的模型性能。

2025-07-14 09:28:50 719

原创 基于人体骨架动作识别的神经信息处理技术(6 概率-正确的softmax)

神经网络分类器在当代机器学习和计算机视觉[106]中发挥着重要作用。自从AlexNet [107]出现以来,人们开始进行大量的研究来提高神经网络分类器的性能。为了克服深度网络中的消失梯度,提出了残差连接和各种激活函数[108–110]。为了提高泛化,更好的正则化技术,如辍学[111]。为了达到更好的局部最小值,人们提出了各种优化技术[112,113]。虽然已经探索了许多架构选择和优化方法,但在神经网络分类器的最后一层显示了相对较少的考虑:与softmax输出的交叉熵损失。

2025-07-14 09:28:08 1673

StreamE: Lightweight Updates of Representations for Temporal Knowledge Graphs in Streaming Scenarios

StreamE: Lightweight Updates of Representations for Temporal Knowledge Graphs in Streaming Scenarios

2025-06-23

ExGeo框架代码构成

ExGeo框架代码构成

2024-04-16

TrustGeo参文2:Deep evidential regression(网络不确定性测量)

TrustGeo参文2:Deep evidential regression(网络不确定性测量)

2024-03-25

细粒度IP定位参文32(对抗图对比学习(ARIEL))

细粒度IP定位参文32(对抗图对比学习(ARIEL))

2024-03-15

RIPGeo框架代码构成

RIPGeo框架代码构成

2024-03-13

​知识图谱:基于嵌入的模型(TransE 、TransH、TransR和TransD)

​知识图谱:基于嵌入的模型(TransE 、TransH、TransR和TransD)

2024-03-12

知识图谱技术综述(电子科技大学学报 2016年发表)

知识图谱技术综述(电子科技大学学报 2016年发表)

2024-03-10

细粒度IP定位参文27:Identifying user geolocation

细粒度IP定位参文27:Identifying user geolocation

2024-03-09

细粒度IP定位参文2:(街道IP定位)

细粒度IP定位参文2:(街道IP定位)

2024-03-08

RIPGeo参文9:(细粒度IP定位)

RIPGeo参文9:(细粒度IP定位)

2024-03-08

TrustGeo: Uncertainty-Aware Dynamic Graph Learning for Trustwort

提供了TrustGeo框架的原始PyTorch实现。

2024-02-19

C语言项目实战案例(带源码和解析)(第三部分:C语言2048小游戏演示和说明)

C语言项目实战案例(带源码和解析)(第三部分:C语言2048小游戏演示和说明)

2024-01-05

栈求表达式的值Stack-Expr.zip

栈求表达式的值Stack-Expr.zip

2023-12-23

贪吃蛇游戏下载资源snake

贪吃蛇游戏下载资源snake

2023-12-22

反转有头节点链表下载资源

反转有头节点的链表

2023-12-22

反转无头节点链表下载资源

反转没有头节点的链表

2023-12-22

DETR(End-to-End Object Detection with Transformers (CVPR 20)相关代码

配合“DETR纯代码分享”,可以结合一起看,效果会更好!

2023-10-24

Scene-Recognition-With-Bag-Of-Words-master.zip

本次实验是基于词袋模型的图像分类技术,利用提取的局部区域的分布对图像进行识别。在图像分类中,词袋模型算法需要通过监督或非监督的学习来获得视觉词典。基于词袋模型的图像分类算法一般分为四步,首先对图像进行局部特征向量的提取(本次实验采用HOG);其次利用上一步得到的特征向量集,抽取其中有代表性的向量,作为单词,形成视觉词典(本实验采用K-means聚类算法);然后对图像进行视觉单词的统计,一般判断图像的局部区域和某一单词的相似性是否超过某一阈值,这样即可将图像表示成单词的分布,即完成了图像的表示;最后设计并训练分类器,利用图像中单词的分布进行图像分类(本实验采用KNN分类算法和线性SVM多分类算法)。

2020-08-13

Local-Feature-Matching-master.zip

计算机视觉作业(二)特征匹配是图像处理和计算机视觉的核心组成部分。在本次实验中,我们将创建一个局部特征匹配算法,并尝试匹配真实场景的多个视图。将实现一个简化版本的sift,用于解决局部特征匹配问题,使检测到的特征对遮挡和杂波具有鲁棒性。由于特性是本地的,可以在一张图像中生成数百或数千个特性,同时能够实现实时性能。我们使用Harris角点检测器和sift特征描述符来生成关键点,同时也使用了自适应非最大抑制来获得图像上的均匀分布的角。

2020-08-13

Image_Filtering_and_Hybrid_Images.zip

计算机视觉作业(一)Image Filtering and Hybrid Images的配套代码和结果,用python做的

2020-08-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除