
知识图谱
文章平均质量分 94
路由跳变
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
(ConvE)Convolutional 2D Knowledge Graph Embeddings
本论文的贡献如下:(1)提出了一个简单的,有竞争力的二维卷积链路预测模型——ConvE(2)提出了1-N打分方法以加快训练速度3倍和评估速度300倍(3)模型具有更好的参数效率,比DistMult和R-GCN都要好很多(4)论文提出的模型与其他浅的模型的性能区别随着知识图谱复杂度的增加而成比例增加(5)验证了测试数据集泄露的严重性,同时提出了一个改进版的数据集(6)对ConvE和先前其他最好的模型做了评估,ConvE取得了SOTA效果。原创 2024-03-12 17:35:23 · 1259 阅读 · 0 评论 -
(DistMult)EMBEDDING ENTITIES AND RELATIONS FOR LEARNING AND INFERENCE IN KNOWLEDGE BASES
本文论文提出了基于神经嵌入模型的通用框架,并把当时流行的模型(如NTN、TransE等)套在框架里进行对比,同时提出了将关系矩阵限制为对角矩阵的更简单的方法DISTMULT,最后提出了自己的基于嵌入向量的逻辑规则提取方法,从实验结果来看,论文的工作很有意义,作者做了大量的实验,做了很多方法改动上的尝试,最终提出论文中的简单却又高效的模型,符合奥卡姆剃刀原理。对于实验结果,作者认为对于长路径的规则提取,简单的模型表现相对差点,长路径关系建模需要更复杂的关系语义,因此更复杂的双线性模型会表现得更好。原创 2024-03-12 17:15:04 · 925 阅读 · 0 评论 -
知识图谱:基于张量分解的模型(RESCAL)
RESCAL是一种用于关系学习的张量分解方法,它能够通过学习潜在成分信息来解决集体学习的问题,针对它的一系列实验表明RESCAL具有很好的效果并且具备不俗的时间性能,同时,可以看到张量方法在关系学习这个方向上是很有前景的。原创 2024-03-12 17:01:33 · 1743 阅读 · 0 评论 -
知识图谱:基于嵌入的模型(NTN)
(1)提出神经张量网络模型;(2)使用实体的词向量平均值来表示实体;(3)对实体的词向量,使用无监督预训练的语料结果来初始化它们。但是这个方法的主要弊端在于,每一个关系都有属于自己的独立的张量网络参数,意味着每一个关系的置信度阈值都需要调整,在当时的数据集中只有十几种关系,还可以慢慢地调参,但对于大规模的知识图谱而言,成千上万的关系谓词,这种每个关系都有独立张量网络参数的做法就行不通了。同时在大规模知识图谱的应用中,模型参数量也很大,训练越来越难,对每个关系训练时,要求更多的训练样本,运算量也越来越大。原创 2024-03-12 15:51:06 · 1191 阅读 · 0 评论 -
知识图谱:基于嵌入的模型(TransE 、TransH、TransR和TransD)
论文提出了一种新的学习知识图谱在低维向量空间的嵌入(embedding)的方法——TransH,在克服了TransE的种种局限性(自反映射/一对多/多对一/多对多)的同时,继承了TransE的高效性。经过广泛的实验后,实验表明TransH的效果相较TransE有了很可观的提升,同时论文提出的减少错误负采样标签的Trick也被证明是有效的。但同时本论文同样存在自己的局限性,虽然TransH模型克服了TransE的部分局限性,原创 2024-03-12 14:29:15 · 3772 阅读 · 0 评论 -
知识图谱技术综述
作者简介:徐增林(1980−,男,博士,教授,主要从事机器学习及其在社会网络分析、互联网、计算生物学、信息安全等方面的研究【摘要知识图谱技术是人工智能技术的重要组成部分,其建立的具有语义处理能力与开放互联能力的知识库,可在智 能搜索、智能问答、个性化推荐等智能信息服务中产生应用价值。该文在全面阐述知识图谱定义、架构的基础上,综述知识 图谱中的知识抽取、知识表示、知识融合、知识推理四大核心技术的研究进展以及一些典型应用。该文还将评论当前研究存 在的挑战。关键词。原创 2024-03-12 10:46:40 · 2040 阅读 · 0 评论