选择适合的RAG架构需结合自身业务需求、数据特点、性能要求等因素综合判断,以下是关键考量维度及对应架构选择建议:
1. 按数据规模与类型选择
• 小规模、单一类型数据(如纯文本文档库):
适合基础单阶段检索架构(检索模块+生成模块)。
◦ 检索:用轻量级嵌入模型(如BGE-base、all-MiniLM)+ 简单向量数据库(如FAISS)。
◦ 生成:搭配中小型LLM(如Llama 2-7B、Mistral),无需复杂预处理,适合快速部署。
• 大规模、多类型数据(含图文、表格、长文档):
适合多模态检索+分块优化架构。
◦ 检索:用多模态嵌入模型(如BGE-M3、CLIP),支持文本、图像等跨类型检索;长文档需按语义分块(如LangChain的RecursiveCharacterTextSplitter),搭配分布式向量数据库(如Milvus、Weaviate)。
◦ 生成:用支持长上下文的LLM(如GPT-4 Turbo、Qwen-72B),确保能处理检索到的多源信息。
2. 按检索精度要求选择
• 高精度需求(如专业问答、医疗/法律领域):
适合多阶段检索架构(如“初筛+精排”)。
◦ 第一阶段:用向量检索快速筛选候选文档(如100篇)。
◦ 第二阶段:用精排模型(如CrossEncoder、ColBERT)对候选文档重排序,保留最相关的10-20篇,提升输入生成模块的信息质量。
• 一般精度需求(如客服问答、常识查询):
适合单阶段检索架构,优先保证响应速度,降低部署成本。
3. 按实时性与交互场景选择
• 实时交互场景(如聊天机器人、实时问答):
适合轻量检索+快速生成架构。
◦ 检索:用低延迟嵌入模型(如蒸馏版BGE)+ 内存型向量数据库(如Chroma),确保检索耗时<500ms。
◦ 生成:用量化后的LLM(如4-bit量化的Llama 2),平衡速度与效果。
• 非实时场景(如批量报告生成):
可采用深度检索+复杂生成架构,允许更长检索时间(如多轮检索、融合知识图谱信息),生成更详尽的内容。
4. 按技术复杂度与成本选择
• 低成本、易维护:
选开源工具链组合(如LangChain+FAISS+Llama 2),无需付费API,适合中小团队。
• 高预算、少维护:
可直接用云服务集成架构(如AWS Kendra+Bedrock、阿里云灵积+通义千问),依托厂商优化的检索引擎和模型,降低自研成本。
总结
核心原则:“数据适配+场景匹配+成本可控”。
• 先明确数据规模、类型和精度需求,再选择单阶段/多阶段检索;
• 实时场景优先轻量架构,专业领域侧重多阶段精排;
• 中小团队从开源基础架构起步,逐步根据需求迭代优化(如增加分块策略、精排模块)。