【RAG专题】如何选择合适的RAG架构?

选择适合的RAG架构需结合自身业务需求、数据特点、性能要求等因素综合判断,以下是关键考量维度及对应架构选择建议:

1. 按数据规模与类型选择

• 小规模、单一类型数据(如纯文本文档库):
适合基础单阶段检索架构(检索模块+生成模块)。

◦ 检索:用轻量级嵌入模型(如BGE-base、all-MiniLM)+ 简单向量数据库(如FAISS)。

◦ 生成:搭配中小型LLM(如Llama 2-7B、Mistral),无需复杂预处理,适合快速部署。

• 大规模、多类型数据(含图文、表格、长文档):
适合多模态检索+分块优化架构。

◦ 检索:用多模态嵌入模型(如BGE-M3、CLIP),支持文本、图像等跨类型检索;长文档需按语义分块(如LangChain的RecursiveCharacterTextSplitter),搭配分布式向量数据库(如Milvus、Weaviate)。

◦ 生成:用支持长上下文的LLM(如GPT-4 Turbo、Qwen-72B),确保能处理检索到的多源信息。

2. 按检索精度要求选择

• 高精度需求(如专业问答、医疗/法律领域):
适合多阶段检索架构(如“初筛+精排”)。

◦ 第一阶段:用向量检索快速筛选候选文档(如100篇)。

◦ 第二阶段:用精排模型(如CrossEncoder、ColBERT)对候选文档重排序,保留最相关的10-20篇,提升输入生成模块的信息质量。

• 一般精度需求(如客服问答、常识查询):
适合单阶段检索架构,优先保证响应速度,降低部署成本。

3. 按实时性与交互场景选择

• 实时交互场景(如聊天机器人、实时问答):
适合轻量检索+快速生成架构。

◦ 检索:用低延迟嵌入模型(如蒸馏版BGE)+ 内存型向量数据库(如Chroma),确保检索耗时<500ms。

◦ 生成:用量化后的LLM(如4-bit量化的Llama 2),平衡速度与效果。

• 非实时场景(如批量报告生成):
可采用深度检索+复杂生成架构,允许更长检索时间(如多轮检索、融合知识图谱信息),生成更详尽的内容。

4. 按技术复杂度与成本选择

• 低成本、易维护:
选开源工具链组合(如LangChain+FAISS+Llama 2),无需付费API,适合中小团队。

• 高预算、少维护:
可直接用云服务集成架构(如AWS Kendra+Bedrock、阿里云灵积+通义千问),依托厂商优化的检索引擎和模型,降低自研成本。

总结

核心原则:“数据适配+场景匹配+成本可控”。

• 先明确数据规模、类型和精度需求,再选择单阶段/多阶段检索;

• 实时场景优先轻量架构,专业领域侧重多阶段精排;

• 中小团队从开源基础架构起步,逐步根据需求迭代优化(如增加分块策略、精排模块)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值