【深度学习实战】迈出第一步------编写第一个神经网络

本文作者分享了自己在深度学习实践中遇到的问题和反思,强调实际编写神经网络的重要性。通过创建回归函数,生成训练数据并绘制计算图,逐步解释了一个简单神经网络的构造过程。最后,概述了神经网络训练的四个基本步骤,并鼓励读者实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前记

其实刚开始记录这个内容的时候,自己的内心是很纠结的,因为这本就不是我应该纠结的内容,coding是一个程序员必备的技能,不管他是处在一个什么岗位,但是自己貌似走入了一个误区,关于DeepLearning这一块,我一直在跑别人的代码,自认为理论熟悉了,代码写起来不就是小case么,自己是错了,因为,自己在写的时候,发现根本就写不出来,神经网络就是个黑盒子,看的轮子再多,自己没造一个轮子的话,那么万一轮子不存在呢?

有错误,就需要改正,有改正,就有进步,追着光亮那方......

回归函数

根据自己的经验(学习的经验),我们在构建网络时,不管是用Pytorch还是TensorFlow,最重要的是弄懂你需要计算的神经网络的结果,在TensorFlow里面叫做定义计算图(Compute Graph),这个内容是有助于我们理清思路,这对于刚写神经网络的我们来说好处是无比巨大的,现在养成一个好习惯,不论是多么复杂,多少层的神经网络,在计算之前,画出计算图,你会发现神经网络这个黑盒子或许不再黑了.....

好吧,扯了这么多,我们开始步入我们正题吧,在这里,我是自己生成训练数据以及训练结果,定义的数据之后,我们将其采用点图的形式画出来,代码如下:

# 生成训练数据
x=torch.unsqueeze(torch.linspace(-1,1,100),dim=1)
y=x.pow(2)+0.2*torch.rand(x.size())
# 查看x,y的形状
print(x.shape,y.shape)

然后我们看出生成的结果:

接下来就是定义我们的神经网络结构,在这里,我只是简单的定义一层网络结构,想让这层神经网络学习出我们想要的结果,按照之前说的,我们先画出计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值