【深度学习实战】---TensorBoard网络可视化

本文介绍了如何使用TensorBoard对PyTorch 1.1的网络结构进行可视化,包括导入工具、定义网络、生成可视化图及解决在使用过程中遇到的坑,如安装tb-nightly,指定TensorBoard运行目录等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【深度学习实战】—TensorBoard网络可视化

前记

为了能够更加深层次的理解我们的网络结构,不必要是画一份简简单单的网络的草图(如【深度学习实战】迈出第一步------编写第一个神经网络),那么我们可以借助TensorFlow上面的可视化工具TensorBoard来可视化我们网络结构。只能说用了一次这样的工具,你会发现,你对网络中数据的流动会更加的清楚,上面还有一系列的维度表示,可以清楚的让你同时明白网络结构与某个cell的维度

主要环境

jupyter==1.0.0

future==0.17.1	# 这个插件和下面两个插件的安装是因为pytorch所使用的tensorboard是1.14 or above,现在博主更新这篇文章的时候还没有1.14,所有需要这两个插件
tb-nightly==1.14.0a20190520 

tensorboard==1.13.1  # 需要下载这个插件
tensorboardX==1.6
tensorflow==2.0    #需要TensorFlow的支持
tensorflow-tensorboard==0.1.8
torch==1.1.0
torchvision==0.2.2.post3

主干

刚开始接触的时候,本来以为要画大精力去学习,所以从学神经网络然后到这么长时间一直拖到了现在,然后,接触了官网上面的教程,如果我们只是想可视化网络的话,其实是非常简单的,下面就开始画图分析之旅:

建议可以先看一下开源项目:tensorboardX

【个人感觉pytorch 1.1<

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值