【深度学习实战】—TensorBoard
网络可视化
前记
为了能够更加深层次的理解我们的网络结构,不必要是画一份简简单单的网络的草图(如【深度学习实战】迈出第一步------编写第一个神经网络),那么我们可以借助TensorFlow
上面的可视化工具TensorBoard
来可视化我们网络结构。只能说用了一次这样的工具,你会发现,你对网络中数据的流动会更加的清楚,上面还有一系列的维度表示,可以清楚的让你同时明白网络结构与某个cell的维度
主要环境
jupyter==1.0.0
future==0.17.1 # 这个插件和下面两个插件的安装是因为pytorch所使用的tensorboard是1.14 or above,现在博主更新这篇文章的时候还没有1.14,所有需要这两个插件
tb-nightly==1.14.0a20190520
tensorboard==1.13.1 # 需要下载这个插件
tensorboardX==1.6
tensorflow==2.0 #需要TensorFlow的支持
tensorflow-tensorboard==0.1.8
torch==1.1.0
torchvision==0.2.2.post3
主干
刚开始接触的时候,本来以为要画大精力去学习,所以从学神经网络然后到这么长时间一直拖到了现在,然后,接触了官网上面的教程,如果我们只是想可视化网络的话,其实是非常简单的,下面就开始画图分析之旅:
建议可以先看一下开源项目:tensorboardX
【个人感觉pytorch 1.1<