apollo学习笔记十四:apollo规划技术(四)

Understand More on the MP Difficulty

EM算法

在这里插入图片描述

EM算法是一个在已知部分相关变量的情况下,估计未知变量的迭代技术,首先通过动态规划方式对整个问题有一个粗浅的认识,然后通过二次规划进行强化,这种启发式搜索方法是目前百度Apollo的EM算法的核心思想。这种方法和人开车的过程是一样的,通常驾驶员会先形成一个大概的指导思想,指明往什么方向开,然后再规划一条最优路径。

  • EM的算法流程如下:
    1、初始化分布参数;
    2、重复直到收敛。
    重复直到收敛的步骤如下:
    2.1、E步骤:根据隐含数据的假设值,给出当前的参数的极大似然估计;
    2.2、M步骤:重新给出未知变量的期望估计,应用于缺失值。
  • 缺点:
    本质是贪心算法,所以只能找到局部最优解

约束

在这里插入图片描述

在无人车场景中,有三类约束,第一个叫做 Rraffic Regulation,第二个是 Decisions,第三个是 Best Trajectory 。这些限制又分为硬限制和软限制,例如交通规则属于硬性限制。

约束问题的核心有三点:第一是目标函数的定义,目标函数比较清晰,对于后面的求解更有帮助。第二是约束,比如路网约束、交规、动态约束等。第三是约束问题的优化,比如动态规划、二次规划等。

优化

优化决策问题本身是一个 3D opt

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值