Understand More on the MP Difficulty
EM算法
EM算法是一个在已知部分相关变量的情况下,估计未知变量的迭代技术,首先通过动态规划方式对整个问题有一个粗浅的认识,然后通过二次规划进行强化,这种启发式搜索方法是目前百度Apollo的EM算法的核心思想。这种方法和人开车的过程是一样的,通常驾驶员会先形成一个大概的指导思想,指明往什么方向开,然后再规划一条最优路径。
- EM的算法流程如下:
1、初始化分布参数;
2、重复直到收敛。
重复直到收敛的步骤如下:
2.1、E步骤:根据隐含数据的假设值,给出当前的参数的极大似然估计;
2.2、M步骤:重新给出未知变量的期望估计,应用于缺失值。 - 缺点:
本质是贪心算法,所以只能找到局部最优解
约束
在无人车场景中,有三类约束,第一个叫做 Rraffic Regulation,第二个是 Decisions,第三个是 Best Trajectory 。这些限制又分为硬限制和软限制,例如交通规则属于硬性限制。
约束问题的核心有三点:第一是目标函数的定义,目标函数比较清晰,对于后面的求解更有帮助。第二是约束,比如路网约束、交规、动态约束等。第三是约束问题的优化,比如动态规划、二次规划等。
优化
优化决策问题本身是一个 3D opt