算法介绍

线性回归是一种最基本的统计学习方法,用于建立输入变量与连续输出变量之间的关系。其主要目标是找到一条最佳的直线(或超平面),以最小化预测值与实际值之间的差异。以下是线性回归算法的介绍:
线性回归算法介绍:
-
模型表示:
- 线性回归建立在线性模型的基础上,假设输入特征和输出之间存在线性关系,即:
y = w 0 + w 1 x 1 + w 2 x 2 + . . . + w n x n + ϵ y = w_0 + w_1x_1 + w_2x_2 + ... + w_nx_n + \epsilon y