HDU - 5521(最短路+巧妙建图)

Meeting

题目传送门
题意:有n个点,点按照1-n标号,m个集合,每个集合里面的点之间的距离都相等,有两个人,一个在1,另一个在n,他们要见面,且见面地点只能在点上,现在给出每个集合里面的点以及他们之间相等的距离,求他们见面的所需的最小时间和地点。
思路:很容易想到,分别从1开始和n开始做最短路,再从dis1和disn中取最大(实际时间为两者之间最大的),再取最小即可。但如果按照每个集合里面的点之间两两之间建图的话,边数太多会超时。实际上这样建图有很多边是多余的。可以知道,只要到达该集合,则需要花费给定时间time就可以到达该集合任意一点,所以我们可以把集合看作一个额外的点,集合里面的点到该点要花费time,而集合到该点则需0,如此建一个有向图既满足题目要求又大大减少的边数。

#include <iostream>
#include <fstream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <cmath>
#include <algorithm>
#include <functional>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int MAXN=1e6+10;
const int MAX=1e6+10;
const double eps=1e-6;

int n,m,point;
int dis[MAX],dis1[MAX],disn[MAX];
int first[MAX],num;
struct EDGE{
    int v,w,next;
}edge[MAXN*5];
typedef pair<int,int>P;

struct NODE{
    int Time,id;
}ans[MAX];

void init(){
    num=0;
    memset(first,-1,sizeof(first));
}

void addedge(int u,int v,int w){
    edge[num].v=v;
    edge[num].w=w;
    edge[num].next=first[u];
    first[u]=num++;
}

void dijkstra(int s){
    priority_queue<P,vector<P>,greater<P> >q;
    dis[s]=0;
    q.push(P(0,s));
    while(q.size()){
        P t=q.top();
        q.pop();
        int u=t.second;
        if(dis[u]<t.first)
            continue;
        for(int i=first[u];i!=-1;i=edge[i].next){
            int v=edge[i].v;
            int w=edge[i].w;
            if(dis[v]>dis[u]+w){
                dis[v]=dis[u]+w;
                q.push(P(dis[v],v));
            }
        }
    }
}

int main(){
    #ifdef ONLINE_JUDGE
    #else
    freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    #endif

    int T,flag=1;
    cin>>T;
    while(T--){
        printf("Case #%d: ", flag++);
        cin>>n>>m;
        init();
        point=n+1;
        int far,num,t;
        for(int i=1;i<=m;i++){
            scanf("%d%d",&far,&num);
            for(int j=1;j<=num;j++){
                scanf("%d",&t);
                addedge(t,point,far);
                addedge(point,t,0);
            }
            point++;
        }
        point--;
        fill(dis,dis+point+1,inf);
        dijkstra(1);    
        for(int i=1;i<=n;i++)
            dis1[i]=dis[i];
        fill(dis,dis+point+1,inf);
        dijkstra(n);    
        for(int i=1;i<=n;i++)
            disn[i]=dis[i];
        int minn=inf;
        for(int i=1;i<=n;i++){
            dis[i]=max(dis1[i],disn[i]);
            if(minn>dis[i])
                minn=dis[i]; 
        }
        if(dis1[n]==inf)
            cout<<"Evil John"<<endl;
        else{
            cout<<minn<<endl;int flag=0;
            for(int i=1;i<=n;i++){
                if(minn!=dis[i])    continue;
                if(flag)
                    cout<<" "<<i;
                else
                    cout<<i,flag=1;
            }
            cout<<endl;
        }

    }

    return 0;   
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值