Meeting
题目传送门
题意:有n个点,点按照1-n标号,m个集合,每个集合里面的点之间的距离都相等,有两个人,一个在1,另一个在n,他们要见面,且见面地点只能在点上,现在给出每个集合里面的点以及他们之间相等的距离,求他们见面的所需的最小时间和地点。
思路:很容易想到,分别从1开始和n开始做最短路,再从dis1和disn中取最大(实际时间为两者之间最大的),再取最小即可。但如果按照每个集合里面的点之间两两之间建图的话,边数太多会超时。实际上这样建图有很多边是多余的。可以知道,只要到达该集合,则需要花费给定时间time就可以到达该集合任意一点,所以我们可以把集合看作一个额外的点,集合里面的点到该点要花费time,而集合到该点则需0,如此建一个有向图既满足题目要求又大大减少的边数。
#include <iostream>
#include <fstream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <cmath>
#include <algorithm>
#include <functional>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int MAXN=1e6+10;
const int MAX=1e6+10;
const double eps=1e-6;
int n,m,point;
int dis[MAX],dis1[MAX],disn[MAX];
int first[MAX],num;
struct EDGE{
int v,w,next;
}edge[MAXN*5];
typedef pair<int,int>P;
struct NODE{
int Time,id;
}ans[MAX];
void init(){
num=0;
memset(first,-1,sizeof(first));
}
void addedge(int u,int v,int w){
edge[num].v=v;
edge[num].w=w;
edge[num].next=first[u];
first[u]=num++;
}
void dijkstra(int s){
priority_queue<P,vector<P>,greater<P> >q;
dis[s]=0;
q.push(P(0,s));
while(q.size()){
P t=q.top();
q.pop();
int u=t.second;
if(dis[u]<t.first)
continue;
for(int i=first[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
int w=edge[i].w;
if(dis[v]>dis[u]+w){
dis[v]=dis[u]+w;
q.push(P(dis[v],v));
}
}
}
}
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
#endif
int T,flag=1;
cin>>T;
while(T--){
printf("Case #%d: ", flag++);
cin>>n>>m;
init();
point=n+1;
int far,num,t;
for(int i=1;i<=m;i++){
scanf("%d%d",&far,&num);
for(int j=1;j<=num;j++){
scanf("%d",&t);
addedge(t,point,far);
addedge(point,t,0);
}
point++;
}
point--;
fill(dis,dis+point+1,inf);
dijkstra(1);
for(int i=1;i<=n;i++)
dis1[i]=dis[i];
fill(dis,dis+point+1,inf);
dijkstra(n);
for(int i=1;i<=n;i++)
disn[i]=dis[i];
int minn=inf;
for(int i=1;i<=n;i++){
dis[i]=max(dis1[i],disn[i]);
if(minn>dis[i])
minn=dis[i];
}
if(dis1[n]==inf)
cout<<"Evil John"<<endl;
else{
cout<<minn<<endl;int flag=0;
for(int i=1;i<=n;i++){
if(minn!=dis[i]) continue;
if(flag)
cout<<" "<<i;
else
cout<<i,flag=1;
}
cout<<endl;
}
}
return 0;
}