- 博客(586)
- 资源 (1)
- 收藏
- 关注
原创 MyBatis-Plus 自动赋值实体字段
本文深入解析MyBatis-Plus自动赋值实体字段的实现与应用。主要内容包括:1)自动填充的四大场景(时间戳、用户信息等)及四种填充策略;2)关键注解@TableField和@TableId的配置方法;3)通过MetaObjectHandler实现自动填充的完整代码示例;4)不同填充策略的行为对比表格。文章还总结了自动赋值的三大优势,并提供了常见问题解决方案和最佳实践建议,帮助开发者提升效率并保证数据一致性。
2025-07-23 11:25:22
987
原创 图形学算法(三):贝塞尔曲线算法
本文深入解析了计算机图形学中的贝塞尔曲线算法。首先阐述了贝塞尔曲线的数学原理,包括一阶(直线)、二阶(抛物线)、三阶(立方)及高阶曲线的定义公式。其次介绍了贝塞尔曲线在矢量图形设计、字体设计、动画制作和CAD等领域的应用场景。然后通过Java代码示例详细展示了二阶和三阶贝塞尔曲线的实现方法,并给出了输出结果。最后对不同阶数贝塞尔曲线的特点进行了比较,指出贝塞尔曲线具有灵活控制、易于实现的特点,是图形学中重要的基础算法。
2025-07-18 09:17:59
538
原创 图形学算法(二):光栅化算法
本文介绍了图形学中的核心算法——光栅化技术。光栅化是将几何图形转换为像素的过程,包含图形转换、裁剪、三角形遍历、像素着色和深度测试等步骤。文章详细解析了扫描线算法、Bresenham算法和Z缓冲算法等常见光栅化方法,并讨论了性能优化策略。最后通过Java代码示例展示了扫描线算法的简单实现,提供了进一步优化的方向。光栅化算法的高效实现对图形渲染性能至关重要,随着硬件发展,结合并行计算等技术将获得更好的渲染效果。
2025-07-18 09:17:41
1030
原创 图形学算法(一):Bresenham线段绘制算法
Bresenham线段绘制算法是计算机图形学中高效绘制直线的经典算法。该算法通过整数运算避免了浮点计算,提高了绘制效率,特别适用于硬件实现。文章详细介绍了算法原理、实现步骤(包括初始化与决策变量计算),并提供了Java代码示例。算法优点包括高效性、高精度和简洁性,但仅适用于直线绘制。与其他算法(如DDA)相比,Bresenham算法在性能上更具优势。本文旨在帮助读者深入理解这一经典图形学算法并提升应用能力。
2025-07-18 09:17:24
896
原创 网络与协议算法(四):网络流量分析与控制算法
本文探讨了网络流量分析与控制的关键技术与算法应用。文章首先概述了网络流量分析的目标和方法,包括流量监控、分类、性能评估和故障检测。随后详细介绍了TCP流量控制(滑动窗口)和拥塞控制(慢启动、拥塞避免等)机制,以及令牌桶和漏桶两种流量整形算法。通过Java代码示例展示了TCP拥塞控制模拟和流量分析统计的实现过程,包括数据包发送速率控制和流量类型分布统计。文章指出,随着网络规模扩大,智能化流量控制算法将成为未来发展方向,这些技术对优化网络性能、提升用户体验具有重要意义。
2025-07-18 09:17:07
835
原创 网络与协议算法(三):链路层协议
链路层位于OSI模型的第二层,主要负责在物理层提供的传输媒介上进行数据的传输。帧封装:将上层数据(如网络层的IP数据包)封装成链路层的帧,以便通过物理层传输。错误检测与纠正:对数据帧进行差错检测,并采取纠错措施以保证数据传输的可靠性。流量控制:在链路层实现流量控制,确保发送速率不会超过接收方的处理能力。地址映射:通过MAC地址实现设备之间的唯一标识,进行设备间的通信。
2025-07-18 09:16:04
1012
原创 网络与协议算法(二):TCP/IP协议栈
摘要:本文深入解析TCP/IP协议栈的组成与工作原理,涵盖应用层、传输层、网络层和数据链路层的功能及常见协议,比较TCP与UDP的特性差异。通过Java代码示例演示TCP客户端/服务器的实现过程,帮助读者理解网络通信的基本原理。文章指出掌握TCP/IP协议栈是网络开发的基础,为实际应用提供理论支持和技术指导。
2025-07-18 09:15:41
550
原创 网络与协议算法(一):路由算法
《路由算法解析:从RIP到OSPF的实现与比较》 本文系统介绍了计算机网络中的核心路由算法,重点分析距离矢量算法(RIP)和链路状态算法(OSPF)。RIP通过跳数计算最短路径,适合小型网络但存在15跳限制;OSPF采用Dijkstra算法,支持大规模网络。文章通过Java代码模拟RIP的路由表更新过程,并对比两类算法的特性:RIP简单但收敛慢,OSPF复杂但扩展性强。随着网络发展,动态路由算法在效率、容错性方面的优化将成为关键研究方向。本文为理解路由算法原理及实现提供了实践参考。
2025-07-18 09:15:15
1011
原创 加密与解密算法(五):Diffie-Hellman密钥交换
Diffie-Hellman密钥交换协议是由Whitfield Diffie和Martin Hellman于1976年提出的,它是第一个能够在不直接交换密钥的情况下进行安全密钥交换的加密协议。DH协议的核心思想是利用数学中的离散对数问题,通过公开的参数交换加密密钥。Diffie-Hellman密钥交换协议提供了一种安全的方式来在不直接传输密钥的情况下共享密钥。它依赖于离散对数问题的计算困难性来保证安全性。在实际应用中,Diffie-Hellman协议通常与其他认证机制结合使用,以抵御中间人攻击等安全威胁。
2025-07-18 09:14:26
952
原创 加密与解密算法(二):AES算法
AES是由比利时密码学家Vincent Rijmen和Joan Daemen提出的对称加密算法,取代了原有的DES(Data Encryption Standard)算法。它是美国国家标准与技术研究院(NIST)于2001年发布的加密标准,被广泛应用于政府、金融机构和商业领域。AES算法使用固定大小的块和密钥进行加密,支持三种密钥长度:128位、192位和256位。AES的加密过程分为多个步骤,每个步骤涉及对数据块的变换。AES作为一种高效且安全的对称加密算法,广泛应用于现代信息安全中。
2025-07-18 09:13:51
944
原创 加密与解密算法(四):哈希算法
本文深入探讨了哈希算法在计算机安全领域的重要作用。文章首先概述了哈希算法的基本概念,包括其固定长度输出、快速计算、单向性和碰撞性等特点,并介绍了MD5、SHA系列等常见算法。通过对不同哈希算法的对比分析,指出MD5安全性较低而SHA-256/SHA-512更安全但速度较慢。文章重点展示了Java实现MD5、SHA-256和HMAC-SHA256的代码示例,详细说明了其应用方法和场景。最后总结了哈希算法计算速度快、安全性高等优点,以及存在碰撞问题和不可逆性等缺点,强调在实际应用中需根据安全需求选择合适的算法。
2025-07-16 09:46:07
986
原创 加密与解密算法(三):DES算法
DES(数据加密标准)最早由IBM在1970年代开发,并于1977年被美国国家标准与技术研究院(NIST)采纳为联邦信息处理标准(FIPS PUB 46)。DES是一种对称密钥算法,意味着加密和解密过程使用相同的密钥。它的设计目标是提供数据的保密性,防止未经授权的访问。DES的加密过程涉及一个64位的明文和一个56位的密钥。尽管56位密钥在当今的计算能力面前已经不再安全,但DES仍然是密码学中基础算法之一,对后续的加密算法设计产生了深远影响。
2025-07-16 09:45:32
581
原创 加密与解密算法(一):RSA算法
RSA算法是一种基于大数分解难题的非对称加密算法,由Rivest、Shamir和Adleman于1977年提出,广泛应用于数据加密和数字签名。其核心原理是利用公钥加密、私钥解密,通过选择两个大素数生成密钥对,并基于欧拉函数和模运算实现加密解密过程。本文详细介绍了RSA的数学基础、密钥生成步骤以及加密解密流程,并通过Java代码示例展示了具体实现方法。与对称加密算法相比,RSA虽然速度较慢但安全性更高,常与AES等算法结合使用。文章还对比了RSA与其他加密算法的特性,帮助读者理解其应用场景。
2025-07-16 09:45:08
579
原创 计算几何算法(四):平面分割与Voronoi图
本文介绍了计算几何中的平面分割与Voronoi图算法。平面分割通过几何图形将二维平面划分为若干子区域,在地理信息、图形学等领域有广泛应用。Voronoi图将平面划分为多个区域,每个区域内的点离特定点最近,可用于GIS、路径规划、图形学等场景。重点阐述了Voronoi图的Fortune算法及其Java实现,分析了Voronoi图与Delaunay三角网的对偶关系,并讨论了优化方法和实际应用。这些算法为空间数据分析提供了重要工具,具有广泛的理论和实践价值。
2025-07-16 09:44:46
830
原创 计算几何算法(三):最近点对问题
本文探讨了计算几何中的经典问题——最近点对问题,介绍了暴力法和分治法两种解法。暴力法简单直观但效率较低(O(n²)),适用于小规模数据;分治法通过递归分割、合并处理,将时间复杂度优化至O(nlogn),更适合大规模点集。文章详细阐述了分治算法的步骤、时间复杂度分析,并提供了完整的Java实现代码,包括点类定义、距离计算、递归分治和合并处理等关键环节。通过对比两种方法的性能表现,表明分治算法在处理大规模数据时具有显著优势。该算法在计算机图形学、GIS等领域有广泛应用价值。
2025-07-16 09:44:25
955
原创 计算几何算法(二):线段相交问题
本文详解了计算几何中的线段相交问题,介绍了三种主要算法:暴力算法(O(n²))、扫描线算法(O(nlogn))和分治法(O(nlogn)),通过Java代码展示了实现方法。暴力算法简单但效率低,适用于小数据集;扫描线算法和分治法更高效,适合处理大规模数据。文章还分析了各算法的优缺点和适用场景,为计算机图形学、GIS等领域的几何问题提供了实用解决方案。
2025-07-16 09:43:54
835
原创 计算几何算法(一):凸包算法
本文详细介绍了计算几何中的凸包算法及其Java实现。首先解释了凸包的定义和几何性质,即在二维平面中包围给定点集的最小凸多边形。接着重点分析了两种常见算法:Graham扫描算法(时间复杂度O(nlogn),需极角排序)和GiftWrapping算法(时间复杂度O(n^2),更直观但效率较低),并提供了完整的Java代码示例。文章还对比了不同算法的性能特点,指出Graham扫描算法在平衡效率和实现难度方面的优势。最后强调凸包算法在计算机图形学、GIS等领域的重要应用价值,为开发者选择合适算法提供了参考依据。
2025-07-16 09:43:25
885
原创 图像压缩与编码算法(四):Run-Length Encoding
本文介绍了游程编码(RLE)这一经典无损图像压缩算法。RLE通过将连续相同的像素值压缩为"像素值-出现次数"的数据对,特别适用于简单图像和黑白图像。文章详细解析了RLE的工作原理、压缩过程,并提供了Java实现示例。分析显示,RLE具有算法简单、无损压缩等优点,但对复杂图像压缩效果不佳。与其他压缩算法相比,RLE在简单图像处理中仍具优势。最后指出RLE在传真技术、视频压缩等领域的典型应用场景,并建议根据图像特征选择合适的压缩算法。
2025-07-16 09:43:03
535
原创 图像压缩与编码算法(三):LZW压缩算法
LZW压缩算法是一种基于字典的无损数据压缩技术,广泛应用于GIF、TIFF等图像格式。该算法通过构建动态字典记录重复子串,用短代码替代以减少存储空间。文章详细解析了LZW的工作原理、压缩流程(初始化字典、扫描匹配、更新字典)并通过"ABABABABA"字符串示例演示了压缩过程。Java代码实现了LZW的压缩与解压功能,展示了该算法的实际应用。LZW具有无损、高效等优点,但也存在内存消耗大、压缩比有限等缺点。本文为理解图像压缩技术提供了实用参考。
2025-07-16 09:42:35
633
原创 图像压缩与编码算法(二):Huffman编码
Huffman编码是一种经典的无损数据压缩算法,通过构建二叉树为不同频率的数据分配变长编码,高频数据用短编码,低频数据用长编码。本文详解了Huffman编码的实现步骤:统计字符频率、构建Huffman树、生成编码、压缩数据,并提供了完整的Java实现代码。通过节点类定义、Huffman树构建、编码生成和图像压缩示例,展示了该算法在图像处理中的应用。最后对比了Huffman编码与其他压缩算法的特点,指出其适用于频率分布不均的数据场景,在文本和图像压缩中仍广泛应用。
2025-07-16 09:42:14
635
原创 图像压缩与编码算法(一):JPEG
JPEG图像压缩算法解析 摘要:JPEG是一种广泛应用的有损图像压缩算法,主要通过颜色空间转换、分块处理、离散余弦变换(DCT)、量化和熵编码五个核心步骤实现高效压缩。算法首先将RGB转换为YCbCr色彩空间,然后对8×8像素块进行DCT变换,通过量化矩阵压缩高频信息,最后使用熵编码进一步减少文件大小。本文详细解析了JPEG工作原理,提供Java实现的关键代码片段,并与PNG、GIF等算法进行对比,展示了JPEG在数字摄影和网页应用中的优势。实验表明,JPEG能在保证视觉效果的前提下实现较高的压缩率。
2025-07-16 09:41:52
845
原创 最优化算法(七):禁忌搜索
本文深入解析禁忌搜索算法(Tabu Search),介绍其通过禁忌表避免局部最优解的核心思想和工作流程。文章详细阐述了算法的关键要素(禁忌表、邻域结构、接受准则)及其优缺点,并以旅行商问题(TSP)为例提供了完整的Java实现代码。代码展示了距离矩阵构建、初始解生成、邻域搜索和禁忌表管理等关键环节。尽管存在计算开销大和参数敏感等缺点,禁忌搜索在解决组合优化问题方面仍具有显著优势。该算法通过灵活调整参数可广泛应用于各类优化问题。
2025-07-16 09:40:59
1010
原创 最优化算法(六):蚁群算法
摘要:本文深入解析了蚁群算法的原理与实现,重点介绍了该算法模拟蚂蚁觅食行为的核心机制(信息素传递、局部选择和全局优化),并详细展示了用Java解决旅行商问题(TSP)的完整实现过程,包括蚂蚁类、蚁群类的代码设计。通过对比遗传算法和模拟退火算法,文章指出蚁群算法在组合优化问题中的独特优势。文末强调该算法虽存在计算复杂度问题,但其全局搜索能力使其成为解决路径规划等实际问题的有效工具,并附有代码示例和推荐阅读资源。
2025-07-16 09:40:39
523
原创 最优化算法(五):粒子群优化
粒子群优化(PSO)算法详解 本文全面介绍了粒子群优化(PSO)算法,包括其基本原理、实现方式和应用特点。PSO是一种受鸟群觅食行为启发的群体智能算法,通过模拟粒子在搜索空间中的移动和协作来寻找最优解。文章详细阐述了PSO的核心公式和算法流程,并提供了一个完整的Java实现代码示例,用于求解函数最小值问题。通过与其他优化算法(如梯度下降、模拟退火)的对比分析,指出PSO具有全局搜索能力强、易于实现等优势,但也存在可能陷入局部最优的缺点。最后,文章建议PSO可与其他算法结合使用,以解决更复杂的优化问题。
2025-07-16 09:40:16
865
原创 最优化算法(四):模拟退火算法
本文介绍了模拟退火算法(SA)这一启发式全局优化算法,它模拟固体退火过程,通过温度控制搜索过程。文章详细阐述了算法原理、核心公式和工作流程,包括高温探索和低温收敛两个阶段。通过Java代码实现展示了如何求解函数最小值问题,解析了目标函数、邻域解生成等关键步骤。文章还比较了SA与梯度下降、遗传算法的优缺点,指出SA在避免局部最优方面的优势。最后强调SA的广泛适用性,建议通过参数调优提高性能,并鼓励实际应用中的创新使用。
2025-07-16 09:39:52
1067
原创 最优化算法(三):遗传算法
本文深入解析了遗传算法的原理与Java实现。遗传算法模拟生物进化过程,通过初始化种群、适应度评估、选择、交叉和变异等步骤实现全局优化。文章详细展示了Java代码实现,包括个体类定义、种群初始化、轮盘赌选择、单点交叉和变异操作。遗传算法具有全局搜索能力强、不依赖梯度信息等优点,但也存在计算量大、参数调优困难等缺点。该算法特别适用于高维复杂优化问题,文末提供了完整Java实现示例和相关技术博客推荐。
2025-07-15 14:54:18
847
原创 最优化算法(二):整数规划
本文介绍了整数规划的基本概念、常见求解方法及Java实现。整数规划要求决策变量为整数,分为0-1规划和整数线性规划两类。主要求解方法包括分支定界法、割平面法和动态规划法。通过Java代码示例演示了物流运输问题的整数规划求解过程,对比了不同方法的优缺点。文章指出整数规划在生产调度、资源分配等领域具有重要应用,并推荐使用Apache Commons Math或Google OR-Tools等工具库进行实现。
2025-07-15 14:11:47
543
原创 最优化算法(一):线性规划
本文介绍了线性规划(LP)的基本概念、求解方法及Java实现。线性规划是一种优化目标函数在约束条件下求最优解的数学方法,广泛应用于经济、工业等领域。文章详细讲解了单纯形法和内点法两种主要求解算法,并重点提供了基于单纯形法的Java代码实现示例,包括目标函数设置、约束条件处理和迭代优化过程。最后对两种算法在计算效率、迭代方式等方面进行了对比分析,指出单纯形法适合中小规模问题,而内点法更适用于大规模问题。文章为读者理解线性规划原理和实现提供了实践指导。
2025-07-15 09:55:56
985
原创 深度学习算法(六):强化学习
本文系统介绍了强化学习的基本概念、核心算法与实现。首先概述了强化学习的构成要素(智能体、环境、状态、动作、奖励等)及其与监督/无监督学习的区别。重点解析了Q-learning算法原理,给出Java实现代码示例,并介绍了策略梯度、Actor-Critic等进阶算法。文章还探讨了深度强化学习的发展趋势,指出其在自动驾驶、机器人等领域的应用前景,并对未来研究方向(高效学习、多智能体系统、安全性等)作出展望。通过理论结合实践的方式,帮助读者深入理解强化学习技术。
2025-07-15 09:48:50
985
原创 深度学习算法(五):生成对抗网络
本文详细介绍了生成对抗网络(GAN)的原理与应用。GAN由生成器和判别器组成,通过对抗训练生成逼真数据,在图像生成等领域应用广泛。文章首先阐述了GAN的基本概念、训练过程和损失函数,然后介绍了DCGAN、WGAN等常见变种。最后以Java的DeepLearning4J框架为例,展示了GAN的实现过程,包括环境配置、网络构建和训练方法。通过对抗博弈,生成器可不断优化生成质量,为深度学习领域带来重要突破。
2025-07-15 09:41:02
655
原创 深度学习算法(四):长短时记忆网络
本文全面解析了长短时记忆网络(LSTM)的工作原理及其Java实现。LSTM通过遗忘门、输入门、输出门和细胞状态更新四个关键机制,有效解决了传统RNN的梯度消失问题,特别适合处理长序列数据。文章对比了LSTM与传统RNN的差异,并使用Deeplearning4j框架演示了Java实现过程,包括添加依赖、构建LSTM模型和训练保存等步骤。LSTM在自然语言处理、语音识别和时间序列预测等领域具有广泛应用价值,本文为开发者提供了实用的技术指导和代码示例。
2025-07-15 09:33:54
771
原创 深度学习算法(三):循环神经网络
本文介绍了循环神经网络(RNN)及其在序列数据处理中的核心作用,重点分析了RNN的基本结构、工作原理及其局限性(如梯度消失/爆炸问题)。文章详细阐述了两种改进模型LSTM和GRU的门控机制设计,并通过Java代码实现了一个简单RNN的前向传播过程。最后总结了RNN家族的技术特点与发展方向,指出优化模型结构、提升训练效率将是未来研究重点。全文系统性地梳理了RNN的技术脉络,为深度学习序列建模提供了基础性参考。
2025-07-15 09:27:18
664
原创 深度学习算法(二):卷积神经网络
本文详细介绍了卷积神经网络(CNN)的原理和应用。CNN是一种特殊的前馈神经网络,主要用于处理网格结构数据如图像,通过卷积层、池化层、全连接层和激活函数的组合自动提取特征。文章解析了LeNet-5和AlexNet两种经典架构的工作原理,并通过Java代码示例展示了使用DL4J框架实现CNN的过程,包括数据加载、模型定义、训练和评估等关键步骤。最后总结了CNN在图像处理等领域的强大应用能力,为读者理解和使用CNN提供了实用指导。
2025-07-15 09:17:26
923
原创 深度学习算法(一):前馈神经网络
本文详细介绍了前馈神经网络(FNN)的基础知识与应用。首先阐述了FNN的网络结构、激活函数(如Sigmoid、ReLU)等核心概念及其数学表达。重点讲解了FNN的训练过程,包括损失函数计算、反向传播算法和梯度下降优化。随后通过Java代码实现了一个包含输入层、隐藏层和输出层的FNN模型,展示了前向传播和反向传播的具体实现。最后讨论了性能优化方法(如正则化、批量归一化)及FNN在深度学习中的基础地位。全文系统性地梳理了FNN的理论与实践,为理解更复杂神经网络奠定了基础。
2025-07-14 16:04:32
2136
原创 机器学习算法(十):PCA
摘要: PCA(主成分分析)是一种高效的降维技术,通过线性变换将高维数据映射到低维空间,保留最大方差信息。其核心步骤包括数据中心化、计算协方差矩阵、特征值分解、选择主成分及数据投影。PCA广泛应用于降维、特征提取、数据可视化和去噪,尤其适用于线性数据场景。相比LDA和t-SNE等其他方法,PCA计算简单但无法处理非线性关系。本文结合Java代码实现,详细解析了PCA的原理与应用,为机器学习中的数据处理提供实用指导。
2025-07-11 17:33:59
849
原创 机器学习算法(九):K-近邻
本文详细介绍了K-近邻算法(KNN)的原理及其Java实现。KNN是一种基于实例的机器学习算法,通过计算样本距离进行分类或回归。文章分析了KNN的工作流程、优势劣势(简单易懂但计算开销大),并探讨了几种距离度量方法(欧几里得、曼哈顿等)和关键超参数(K值、权重等)。重点展示了使用Weka库在Java中实现KNN分类器的完整过程,包括数据准备、模型构建和评估。最后提出了优化方法如KD树、降维技术和加权KNN,以提升算法性能。该文为理解KNN算法及其应用提供了全面指导。
2025-07-11 17:31:29
826
原创 机器学习算法(八):梯度下降法
本文详细介绍了机器学习中的核心优化算法——梯度下降法。内容包括梯度下降的基本原理、三种主要类型(批量梯度下降、随机梯度下降和小批量梯度下降),并提供了Java实现示例。文章还探讨了学习率选择、动量法等优化技巧,以及梯度下降法可能遇到的局部最优和梯度爆炸问题。最后总结了梯度下降法在机器学习中的重要性,强调通过合理参数设置和优化方法可提高算法收敛性。该文为理解梯度下降法及其应用提供了全面指导。
2025-07-11 17:26:51
986
原创 机器学习算法(七):神经网络
神经网络是深度学习的核心算法,其结构包括输入层、隐藏层和输出层,通过权重和偏置建立非线性映射关系。本文介绍了神经网络的发展历程、学习过程(前向传播和反向传播)及优化方法(梯度下降法),并提供了Java实现的示例代码。虽然神经网络在多个领域取得了成功,但仍面临过拟合、计算资源消耗大等挑战。随着技术进步,神经网络将在未来发挥更大作用。文章涵盖了神经网络的基本原理、实现方法及未来发展方向。
2025-07-11 17:12:58
699
原创 机器学习算法(六):随机森林算法
本文详细介绍了随机森林算法的原理、优缺点及实现方法。随机森林是一种集成学习算法,通过构建多棵决策树并综合其预测结果来提高准确率。文章分析了Bootstrap采样、随机特征选择等核心概念,并讨论了超参数调优技巧。重点展示了使用Java的Weka库实现随机森林的完整流程,包括数据加载、模型训练、预测和评估(10折交叉验证)。虽然随机森林存在训练时间长、内存占用高等缺点,但其高准确率、处理缺失数据等优势使其成为机器学习中的重要工具。通过合理调参,随机森林能有效应用于分类和回归任务。
2025-07-11 17:08:15
809
原创 机器学习算法(五):决策树
本文深入解析决策树算法的原理与Java实现。决策树是一种直观的监督学习模型,通过递归划分数据集构建树形结构(根节点、决策节点和叶子节点)。关键构建标准包括信息增益和基尼指数,用于特征选择。文章详细展示了Java实现过程,包括节点类定义、熵计算、数据划分等核心方法,并应用于Iris数据集测试。决策树具有可解释性强、无需数据预处理等优点,但也存在过拟合、对噪声敏感等缺点。通过合理剪枝可优化模型性能。该实现为理解这一经典算法提供了实践参考。
2025-07-11 17:05:20
977
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人