P2036 [COCI 2008/2009 #2] PERKET(dfs)

P2036 [COCI 2008/2009 #2] PERKET-dfs

题目描述

Perket 是一种流行的美食。为了做好 Perket,厨师必须谨慎选择食材,以在保持传统风味的同时尽可能获得最全面的味道。你有 n 种可支配的配料。对于每一种配料,我们知道它们各自的酸度 s 和苦度 b。当我们添加配料时,总的酸度为每一种配料的酸度总乘积;总的苦度为每一种配料的苦度的总和。

众所周知,美食应该做到口感适中,所以我们希望选取配料,以使得酸度和苦度的绝对差最小。

另外,我们必须添加至少一种配料,因为没有任何食物以水为配料的。

输入格式

第一行一个整数 n,表示可供选用的食材种类数。

接下来 n 行,每行 2 个整数 s**ib**i,表示第 i 种食材的酸度和苦度。

输出格式

一行一个整数,表示可能的总酸度和总苦度的最小绝对差。

输入输出样例

输入

1
3 10

输出

7

输入

2
3 8
5 8

输出

1

输入

4
1 7
2 6
3 8
4 9

输出

1

说明/提示

数据规模与约定

对于 100% 的数据,有 1≤n≤10,且将所有可用食材全部使用产生的总酸度和总苦度小于 1×109,酸度和苦度不同时为 1 和 0。

代码详细注释说明:

  1. 定义常量和变量

    • const int N = 20;:定义最大食材种类数 N,题目中限制 n <= 10,所以这里给定一个较大的常量 20 以保证能够容纳输入。
    • int acid[N], bitter[N];:分别存储每种食材的酸度和苦度。
    • int st[N];:用于标记每种食材是否被选中,st[i] == 1 表示选中第 i 种食材,st[i] == 0 表示未选,st[i] == 2 作为一种回溯标记(用于后续没有进一步操作时)。
    • int res = INT_MAX;:初始化 res 为一个很大的数,之后用来记录最小的酸度与苦度差值。
  2. dfs 函数:

    • 递归的深度优先搜索函数,dfs(x) 用来遍历从食材 x 开始的所有可能选择(选或不选)。

    • 如果递归到达了

      x > n
      

      ,即所有食材都已经考虑过,则开始计算当前选择的酸度和苦度。

      • 酸度:所有选中的食材的酸度的乘积。
      • 苦度:所有选中的食材的苦度的和。
    • 如果至少选择了一个食材(flag == true),则更新最小的误差 res,即酸度和苦度的绝对差。

  3. 回溯的过程

    • 在每一层递归中,首先尝试不选当前食材(st[x] = 0),然后递归处理剩下的食材。
    • 接着再尝试选当前食材(st[x] = 1),递归处理剩下的食材。
    • 这样通过递归,遍历所有可能的选择组合。
  4. main 函数

    • 读取食材的数量 n 和每种食材的酸度、苦度。
    • 调用 dfs(1) 开始从第 1 种食材开始递归,进行所有可能的选择。
    • 最后输出 res,即最小的酸度与苦度的差值。
#include <bits/stdc++.h>

using namespace std;

const int N = 20;  // 定义最大食材种类数
int n;  // 食材的数量
int acid[N], bitter[N];  // 存储每种食材的酸度和苦度
int st[N];  // 标记每种食材是否被选中(0表示未选,1表示已选)
int res = INT_MAX;  // 存储最小的酸度和苦度的绝对差

// 递归深度优先搜索函数
void dfs(int x) {
    // 当递归到所有食材都被考虑过时
    if (x > n) {
        int sum1 = 1;  // 初始化酸度之积
        int sum2 = 0;  // 初始化苦度之和
        bool flag = false;  // 用于标记是否选择了至少一种食材

        // 遍历所有食材,计算选择的食材的酸度和苦度
        for (int i = 1; i <= n; i++) {
            if (st[i] == 1) {  // 如果第 i 种食材被选中
                flag = true;  // 标记为选中了至少一种食材
                sum1 *= acid[i];  // 更新酸度之积
                sum2 += bitter[i];  // 更新苦度之和
            }
        }

        // 如果至少选择了一种食材,计算并更新最小的酸度和苦度的差值
        if (flag) {
            res = min(res, abs(sum1 - sum2));  // 计算并更新最小差值
        }
        return;  // 递归终止
    }

    // 不选择第 x 种食材
    st[x] = 0;  // 标记第 x 种食材为未选择
    dfs(x + 1);  // 递归处理下一个食材

    // 选择第 x 种食材
    st[x] = 1;  // 标记第 x 种食材为已选择
    dfs(x + 1);  // 递归处理下一个食材

    // 回溯,恢复第 x 种食材的选择状态
    st[x] = 2;  // 2 表示不需要标记,实际上用于标记不做进一步操作
}

int main() {
    cin >> n;  // 输入食材的数量

    // 输入每种食材的酸度和苦度
    for (int i = 1; i <= n; i++) {
        cin >> acid[i] >> bitter[i];  // 输入酸度和苦度
    }

    // 从第 1 种食材开始递归,初始化递归
    dfs(1);

    // 输出计算得到的最小的酸度和苦度的绝对差
    cout << res << endl;

    return 0;
}

题目描述: 有一家餐馆,它的特色菜是一种叫做“Perket”的菜肴。这道菜由N种不同的香料组成,每种香料都有一个正整数的苦味值和一个正整数的美味值。每道菜需要用到至少一种香料,而且每种香料只能用一次。每道菜的苦味值是所有用到的香料的苦味值的乘积,美味值是所有用到的香料的美味值的和。现在,你需要计算出所有菜肴中苦味值和美味值的差的绝对值的最小值。 输入格式: 第一行包含整数N。 接下来N行,每行包含两个整数,表示一种香料的苦味值和美味值。 输出格式: 输出一个整数,表示所有菜肴中苦味值和美味值的差的绝对值的最小值。 输入样例: 3 1 7 2 6 3 8 输出样例: 1 解题思路: 这道题目可以使用二进制枚举的方法来解决。 首先,我们可以将所有的香料的苦味值和美味值分别存储在两个数组中。 然后,我们可以使用二进制枚举的方法来枚举所有的菜肴。具体来说,我们可以使用一个二进制数来表示一道菜肴,其中第i位为1表示这道菜肴中使用了第i种香料,为表示没有使用。 对于每一道菜肴,我们可以计算出它的苦味值和美味值,并将它们分别存储在两个数组中。 最后,我们可以枚举所有的菜肴,计算它们的苦味值和美味值的差的绝对值,并找到其中的最小值。 时间复杂度: 枚举所有的菜肴需要O(2^N)的时间复杂度,计算每道菜肴的苦味值和美味值需要O(N)的时间复杂度,因此总时间复杂度为O(2^N*N)。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

week_泽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值