B3625 迷宫寻路
题目描述
机器猫被困在一个矩形迷宫里。
迷宫可以视为一个 n×m 矩阵,每个位置要么是空地,要么是墙。机器猫只能从一个空地走到其上、下、左、右的空地。
机器猫初始时位于 (1,1) 的位置,问能否走到 (n,m) 位置。
输入格式
第一行,两个正整数 n,m。
接下来 n 行,输入这个迷宫。每行输入一个长为 m 的字符串,#
表示墙,.
表示空地。
输出格式
仅一行,一个字符串。如果机器猫能走到 (n,m),则输出 Yes
;否则输出 No
。
输入输出样例
输入
3 5
.##.#
.#...
...#.
输出
Yes
说明/提示
样例解释
路线如下:(1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(2,3)→(2,4)→(2,5)→(3,5)
数据规模与约定
对于 100% 的数据,保证 1≤n,m≤100,且 (1,1) 和 (n,m) 均为空地。
代码:
#include <bits/stdc++.h>
#define N 110 // 定义最大迷宫尺寸为 110(题目给出 n,m 最大为 100,留有边界缓冲)
using namespace std;
typedef pair<int,int> PII; // 定义一个 pair 类型,存储二维坐标 (行, 列)
// 全局变量声明
int dist[N][N]; // dist[i][j] 用于记录从起点 (1,1) 到 (i,j) 的最短步数(初始化为 -1 表示未访问)
char b[N][N]; // 二维字符数组表示迷宫,'.' 表示空地,'#' 表示墙
int nn, mm; // 迷宫的行数和列数
// 定义四个方向的偏移量:右、左、上、下
int dx[] = {0, 0, -1, 1};
int dy[] = {1, -1, 0, 0};
// 广度优先搜索函数,从起点 (x1, y1) 开始搜索可到达的空地
void bfs(int x1, int y1) {
// 将 dist 数组全部初始化为 -1(表示未访问)
memset(dist, -1, sizeof(dist));
// 使用队列来实现 BFS 算法,队列中存放坐标对
queue<PII> q;
q.push({x1, y1}); // 将起点入队
dist[x1][y1] = 0; // 起点到自身的距离为 0
// 当队列不为空时,继续搜索
while(!q.empty()){
// 取出队首元素(当前正在扩展的点)
auto t = q.front();
q.pop();
// 遍历四个可能的移动方向
for(int i = 0; i < 4; i++){
// 计算新位置的坐标
int a = t.first + dx[i];
int c = t.second + dy[i];
// 判断新位置是否越界(注意:迷宫坐标从 1 开始,到 nn,mm 结束)
if(a < 1 || a > nn || c < 1 || c > mm)
continue; // 超出迷宫边界,跳过此方向
// 判断新位置是否为墙(只有空地才能通行)
if(b[a][c] != '.')
continue;
// 判断新位置是否已经被访问过(dist 不为 -1 说明已访问)
if(dist[a][c] != -1)
continue;
// 更新新位置的步数(当前点步数 + 1)
dist[a][c] = dist[t.first][t.second] + 1;
// 将新位置加入队列,等待后续扩展
q.push({a, c});
}
}
}
int main(){
// 读入迷宫的行数和列数
cin >> nn >> mm;
// 读入迷宫地图,每个字符表示一个格子
// 注意:这里循环下标从 1 到 nn 和 1 到 mm(为了方便处理边界问题)
for(int i = 1; i <= nn; i++){
for(int j = 1; j <= mm; j++){
cin >> b[i][j];
}
}
// 从起点 (1,1) 开始进行广度优先搜索
bfs(1, 1);
// 如果 (nn,mm) 被访问过(dist[nn][mm] != -1),则说明有路径可达,输出 "Yes",否则输出 "No"
cout << (dist[nn][mm] != -1 ? "Yes" : "No");
return 0;
}
详细思路与步骤分析
- 问题建模
- 迷宫被看作一个 n×mn \times mn×m 的矩阵,其中每个格子可以是“空地”(
.
)或“墙”(#
)。 - 题目要求判断从起点 (1,1)(1,1)(1,1) 能否走到终点 (n,m)(n, m)(n,m)。
- 机器猫只能沿上下左右四个方向移动,且必须走在空地上。
- 迷宫被看作一个 n×mn \times mn×m 的矩阵,其中每个格子可以是“空地”(
- 使用广度优先搜索 (BFS)
- 原因: BFS 非常适合用于求解无权图(这里每一步的代价均为 1)的最短路径问题,并且可以判断是否能从起点到达终点。
- 原理: 从起点开始,依次访问所有相邻的空地,并记录每个点到起点的步数。由于 BFS 的层次遍历特性,第一次访问到的点保证是最短路径。
- 数据结构与变量说明
- 队列 (queue): 用于存储当前待扩展的坐标点,保证按照层次进行遍历。
- 二维数组
dist
: 用于记录从起点到每个点的最短步数。初始化为 -1 表示未访问。 - 二维数组
b
: 存储迷宫地图,字符为'.'
表示空地,'#'
表示墙。 - 方向数组
dx
和dy
: 分别对应上下左右的偏移量,便于遍历四个相邻位置。
- BFS 过程详解
- 初始化:
- 将起点 (1,1)(1,1)(1,1) 的步数设为 0,并将其加入队列。
- 循环过程:
- 从队列中取出当前节点,检查其四个方向的相邻位置。
- 边界检查: 确保新坐标不超出迷宫范围。
- 墙体检查: 只有遇到空地才可以继续搜索。
- 重复访问检查: 如果一个位置已经访问过,则跳过,避免重复计算。
- 更新新位置的步数为当前点步数加一,并将其加入队列。
- 结束条件: 队列为空时说明所有可达的空地均已访问。
- 初始化:
- 结果输出
- 最终检查终点 (n,m)(n, m)(n,m) 是否被访问(即
dist[nn][mm] != -1
)。如果被访问过则说明存在一条路径,否则不存在路径。
- 最终检查终点 (n,m)(n, m)(n,m) 是否被访问(即