使用Astra DB和LangChain实现RAG:从入门到精通

使用Astra DB和LangChain实现RAG:从入门到精通

在这篇文章中,我们将探讨如何使用Astra DB结合LangChain来实现RAG(Retrieve and Generate)。读完此文,您将掌握基础设置、代码实现和常见问题的解决方案。

引言

RAG(Retrieve and Generate)模型是一种强大的AI技术,融合了信息检索与生成式AI方法。Astra DB为我们提供了一个高效的向量存储解决方案,而LangChain则是一个用于管理复杂AI应用的强大框架。通过这篇文章,你将学习如何配置与使用Astra DB与LangChain实现RAG任务。

主要内容

环境搭建

  1. Astra DB设置:首先,你需要一个Astra DB数据库,免费版本即可。确保记下你的数据库API端点(例如https://0123...-us-east1.apps.astra.datastax.com)以及访问令牌(AstraCS:...)。
  2. OpenAI API密钥:本教程默认使用OpenAI API。确保你具备有效的API密钥。
  3. 环境变量配置:将连接参数和密钥通过环境变量提供。具体可以参照.env.template文件配置。

安装与准备

要使用此包,首先安装LangChain CLI:

pip install -U 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值