
机器学习--Skr-Eric的编程课堂
专注于机器学习小白的编程课堂
Skr-Eric
文艺系程序猿一枚
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Skr-Eric的机器学习课堂(九)-- 语音识别、图像识别和人脸识别
语音识别 1.梅尔频率倒谱系数(MFCC)矩阵 首先将音频输入按照时间顺序划分为若干片段,将每个片段做傅里叶变换,得到相对应的频率分布,从中提取与人类语言内容相关性最强的十三的特征频率所对应的能量强度,构成一个样本。将从每个片段中所获得的频率样本按行组成一个矩阵,即梅尔频率倒谱系数(MFCC)矩阵。MFCC矩阵反映了该音频输入的内容特征,可被用于对语音内容的识别。 # -*- coding...原创 2020-02-20 17:16:48 · 811 阅读 · 1 评论 -
Skr-Eric的机器学习课堂(八)-- 文本识别
文本识别(自然语言处理,NLP) 人机交互: 语音识别 文本识别 语音-------->文本-------->语义 __________________________ | v 人 ...原创 2020-02-19 16:35:36 · 414 阅读 · 0 评论 -
Skr-Eric的机器学习课堂(七)-- KNN算法和推荐引擎
KNN算法 K - 若干个 N - Nearest,最近 N - Neighbors, 邻居 1.分类 对于一个未知类别的样本,在其周围寻找距离最近的K个已知样本,根据与距离成反比的加权投票,决定未知样本的类别。 # -*- coding: utf-8 -*- from __future__ import unicode_literals import numpy as np imp...原创 2020-02-18 16:45:21 · 380 阅读 · 0 评论 -
Skr-Eric的机器学习课堂(六)-- 聚类
聚类 在未知输出标签的输入集中,利用输入样本之间的某种联系,建立划分模式和逻辑,将输入样本划分成不同的群落。 1.从人的视觉到机器的数觉 一维: P(x1),Q(x2) PQ=sqrt((x1-x2)^2) 二维:P(x1,y1),Q(x2,y2) PQ=sqrt((x1-x2)^2+(y1-y2)^2) 三维:P(x1,y1,z1),Q(x2,y2,z2) PQ=sqrt((x1...原创 2020-02-17 16:40:47 · 449 阅读 · 0 评论 -
Skr-Eric的机器学习课堂(五)-- 基于决策树的分类和支持向量机(SVM)分类
基于决策树的分类 1.基于投票的决策 基于决策树的分类与回归的区别就在于,预测结果的获取,是通过投票而非平均得到的。 ... 命中子表 ... A \ ... B | ... A | ... B > A:2<B:4 ... B | ... B / x -> B # -*- codin...原创 2020-02-14 16:42:22 · 929 阅读 · 0 评论 -
Skr-Eric的机器学习课堂(四)-- 逻辑分类和朴素贝叶斯分类
逻辑分类 y = w0+w1x1 + w2x2 + ... + wnxn z = f(y) y >= 0, z = 1 y < 0, z = 0 1 z = sigmoid(y) = ---------- 1 + e^-y y = 0, z = 0.5 y->oo, z-&...原创 2020-02-13 17:03:04 · 485 阅读 · 0 评论 -
Skr-Eric的机器学习课堂(三)-- 多项式回归和决策树
多项式回归 x->y x1->y1 x2->y2 ... xm->ym ---------- 一元多项式回归 y=w0 + w1 x + w2 x^2 + w3 x^3 + ... + wd x^d 将高次项看做对一次项特征的扩展 y=w0 + w1 x1+ w2 x2 + w2 x3 + ... + wd xd 多元线性回归 x ...原创 2020-02-12 16:21:48 · 581 阅读 · 0 评论 -
Skr-Eric的机器学习课堂(二)-- 线性回归、梯度下降算法和岭回归
线性回归和梯度下降算法 根据机器学习的任务把不同的业务模型划分为四种基本问题: 回归问题 \ 在有监督条件下,根据已知的输入和输出,构建 分类问题 / 预测模型,对未知输出的输入给出大概率的输出 输入 输出 1 2 2 4 3 6 4 8 ------- y = x * 2 5 ? -> 10 输出是一个连续值,回归问题...原创 2020-02-11 15:56:20 · 647 阅读 · 0 评论 -
Skr-Eric的机器学习课堂(一)-- 概述和数据预处理
一、概述 1.什么是机器学习? 人工智能:通过人工的方法,模拟某些人类的智能行为。 机器学习:通过人工的方法,模拟某些人类的学习行为。 自适应,自完善,自发展系统。 定义:一个计算机程序在完成任务T之后,获得经验E,其表现效果为P,如果任务T的性能表现,也就是用以衡量的P,可以随之E的增加而增加,那么这样的程序就可以被称为机器学习系统。 2.为什么需要机器学习? 1)具有机器学...原创 2020-02-10 16:59:23 · 418 阅读 · 2 评论