HDU 2669 Romantic(扩展欧几里得)

本文介绍了一道关于扩展欧几里得算法的题目,详细解析了如何通过该算法解决特定类型的数学问题,即寻找两个非负整数使得它们的线性组合等于1。文章提供了完整的代码实现,并解释了算法背后的数学原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



Romantic

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3235    Accepted Submission(s): 1280


Problem Description
The Sky is Sprite.
The Birds is Fly in the Sky.
The Wind is Wonderful.
Blew Throw the Trees
Trees are Shaking, Leaves are Falling.
Lovers Walk passing, and so are You.
................................Write in English class by yifenfei



Girls are clever and bright. In HDU every girl like math. Every girl like to solve math problem!
Now tell you two nonnegative integer a and b. Find the nonnegative integer X and integer Y to satisfy X*a + Y*b = 1. If no such answer print "sorry" instead.
 

Input
The input contains multiple test cases.
Each case two nonnegative integer a,b (0<a, b<=2^31)
 

Output
output nonnegative integer X and integer Y, if there are more answers than the X smaller one will be choosed. If no answer put "sorry" instead.
 

Sample Input
  
77 51 10 44 34 79
 

Sample Output
  
2 -3 sorry 7 -3
 

Author
yifenfei
 

Source
 

这题有毒,,定义要__int64 输出输入要cout,cin。。
扩展欧几里得的裸题。

扩展欧几里德: 给一个线性方程X*a+Y*b=m,给出a,b,m让求解X和Y。

首先,只有m%gcd(a,b)==0 时 该线性方程才有解。

假使a=k1 *gcd(a,b),b=k2 * gcd(a,b);

那么方程左边就等于(X*k1+Y*k2)*gcd(a,b),所以仅当m能被gcd(a,b)整除时方程才有解。

为了求上述方程的解,我们不妨先来求方程a*X+b*Y=gcd(a,b)的解,设d=m/gcd(a,b);

所以a*(d*X)+b*(d*y)=d*gcd(a,b)=m,求出这个方程的解原方程的解也就求出了。

根据欧几里德有gcd(a,b)=gcd(b,a%b)

所以a*X+b*Y=gcd(a,b)=gcd(b,a%b)=b*X1+(a%b)*Y1;

令k=a/b , r=a%b

a=b*k+r;

得出X=Y1 ,  Y=X1-Y1*(a/b);

#include "string"
#include "iostream"
#include "cstdio"
#include "cmath"
#include "set"
#include "queue"
#include "vector"
#include "cctype"
#include "sstream"
#include "cstdlib"
#include "cstring"
#include "stack"
#include "ctime"
#include "algorithm"
#define pa pair<int,int>
#define Pi M_PI
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
using namespace std;
typedef long long ll;
__int64 EXgcd(__int64 a,__int64 b,__int64& x,__int64& y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    __int64 r=EXgcd(b,a%b,x,y);
    __int64 t=x;
    x=y;
    y=t-a/b*y;
    return r;
}
int main()
{
    __int64 a,b,x,y,Gcd;
    while(cin>>a>>b)
    {
        Gcd=EXgcd(a,b,x,y);
        if(Gcd==1)//为一才有解
        {
            while(x<0)
            {
                x+=b;
                y-=a;
            }
            cout<<x<<" "<<y;
        }
        else
            cout<<"sorry";
        cout<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值