处理烦人的 .ds_store文件

本文介绍如何在MacOSX系统中彻底删除.DS_Store隐藏文件,并阻止其自动生成,避免在使用版本控制系统如svn或git时遇到麻烦。

在 Mac OS X 系统下,几乎绝大部分文件夹中都包含 .DS_Store 隐藏文件,及时手动删除了,也马上自动生成。在svn或者git版本控制时,相当烦人

1. 并输入删除命令:

sudo find / -name ".DS_Store" -depth -exec rm {} \;

2. 删除后继续在终端输入:

defaults write com.apple.desktopservices DSDontWriteNetworkStores true

3.

然后按下回车,就可以防止 .DS_Store 文件的再生了。

然后输入命令,删除已经生成的 .DS_Store文件:

find / -name ".DS_Store" -type f -delete


from langchain_community.document_loaders import UnstructuredFileLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import DashScopeEmbeddings from langchain_community.vectorstores import FAISS from ..log_config import logger import warnings from langchain_core._api import LangChainDeprecationWarning # 忽略一些烦人的警告 warnings.filterwarnings("ignore", category=LangChainDeprecationWarning) def create_vector_db(source_data, db_path): # 1. 读取本地数据源文件 logger.info("开始读取数据源文件...") loader = UnstructuredFileLoader(source_data) doc = loader.load() logger.success("数据源文件读取成功!") # 2. 对读取的文档进行切分 logger.info("开始切分文档...") doc_spliter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) split_doc = doc_spliter.split_documents(doc) logger.success(f"文档切分成功!共切分为 {len(split_doc)} 个块") # 3. 将切分后的文档进行向量化 logger.info("开始初始化词嵌入模型...") embedding = DashScopeEmbeddings( model="text-embedding-v2", dashscope_api_key="sk-f5c6b77ceaff440cafb2eb6557db9472" # 使用您的API Key ) logger.success("词嵌入模型初始化成功!开始构建向量数据库...") db = FAISS.from_documents( split_doc, embedding ) db.save_local(db_path) logger.success("向量数据库构建成功!") if __name__ == '__main__': source_data = "knowledge_base/source_doc.md" db_path = "knowledge_base/vector_db" create_vector_db(source_data, db_path) D:\Anaconda3\envs\rag-day7\Lib\site-packages\requests\__init__.py:86: RequestsDependencyWarning: Unable to find acceptable character detection dependency (chardet or charset_normalizer). warnings.warn( Traceback (most recent call last): File "D:\jishushixian\knowledge_base\preprocessing.py", line 5, in <module> from ..log_config import logger ImportError: attempted relative import with no known parent package
最新发布
09-14
<think> 我们有两个问题需要解决: 1. ImportError: attempted relative import with no known parent package 2. RequestsDependencyWarning: Unable to find acceptable character detection dependency (chardet or charset_normalizer) 首先,我们来解决第一个错误:相对导入错误。 这个错误通常发生在尝试使用相对导入(例如:`from .module import something`)时,但当前模块并没有被识别为一个包的一部分。这可能是由于以下原因: - 脚本被作为主模块运行(使用`python script.py`),而不是作为模块运行。 - 包结构不正确,或者缺少`__init__.py`文件。 在LangChain的上下文中,可能是在某个模块中使用了相对导入,而我们在运行我们的脚本时,该模块没有被当作包的一部分运行。 解决方案: 1. 确保你的项目结构是一个包,并且在每个包目录下都有`__init__.py`文件(可以是空文件)。 2. 避免将包含相对导入的模块作为主脚本运行。如果需要运行,可以考虑使用`-m`参数来运行模块。 例如,如果你的主模块在`my_project`包内,你可以这样运行: python -m my_project.module 3. 如果相对导入是在第三方库中(比如LangChain),那么可能是库的问题。但通常我们不应该修改第三方库的代码。所以我们可以尝试升级LangChain到最新版本,或者检查是否有已知的修复。 接下来,第二个警告:缺少字符检测依赖。 这个警告来自`requests`库,它需要`chardet`或`charset_normalizer`来检测字符编码。在较新版本的`requests`中,它要求至少安装其中一个。 解决方案: 安装缺失的依赖: pip install chardet 或者 pip install charset-normalizer 通常,安装其中一个即可消除警告。 但是,注意:在构建向量数据库的代码中,LangChain可能会使用到`requests`(例如,用于网络请求)。因此,我们需要确保这些依赖被安装。 总结步骤: 1. 解决导入错误: - 检查项目结构,确保有适当的`__init__.py`文件。 - 如果是从命令行运行脚本,尝试使用`python -m your_module`的方式运行。 - 如果问题出现在LangChain内部,尝试升级LangChain:`pip install --upgrade langchain` 2. 解决警告: - 安装`chardet`或`charset_normalizer`:`pip install chardet` 或 `pip install charset-normalizer` 另外,请注意,如果使用了虚拟环境,确保安装依赖的环境与运行环境一致。 如果问题仍然存在,请提供更多关于你的代码结构和运行方式的信息,以便进一步诊断。 相关问题: 1. 如何正确设置Python包结构以避免相对导入错误? 2. 除了安装`chardet`或`charset_normalizer`,还有其他方法解决`RequestsDependencyWarning`吗? 3. LangChain构建向量数据库的常见错误还有哪些? </think> 针对您在使用LangChain构建向量数据库时遇到的导入错误和警告,我将分别提供解决方案: ### 一、解决 `ImportError: attempted relative import with no known parent package` 错误 此错误发生在尝试相对导入(如 `from .module import x`)时Python无法识别当前模块的父包。解决方法如下: 1. **检查项目结构** 确保目录包含有效的Python包结构(必须有`__init__.py`文件): ``` your_project/ ├── __init__.py ├── main_script.py # 主入口脚本 └── langchain_modules/ ├── __init__.py └── your_module.py # 包含相对导入的模块 ``` 2. **修改运行方式** 不要直接运行含相对导入的模块,而是: ```bash # 从项目根目录执行(注意 -m 参数) python -m langchain_modules.your_module ``` 3. **临时修复方案** 在报错模块顶部添加路径设置(不推荐长期使用): ```python import sys; sys.path.append(os.path.dirname(os.path.abspath(__file__))) ``` 4. **检查LangChain安装** 升级到最新版本避免库自身问题: ```bash pip install --upgrade langchain ``` ### 二、解决 `RequestsDependencyWarning` 警告 此警告因`requests`库缺少字符编码检测依赖引起,LangChain的网络操作依赖此库: 1. **安装必需依赖** ```bash # 任选一个字符检测库安装 pip install chardet # 或 pip install charset-normalizer ``` 2. **验证安装结果** ```python import requests print(requests.__version__) # 应 >= 2.26.0(从该版本开始需要字符检测库) ``` 3. **强制指定字符编码(备用方案)** 在发起请求时显式设置编码: ```python response = requests.get(url, headers={'Accept-Charset': 'utf-8'}) ``` ### 三、完整解决方案步骤 1. 安装字符检测依赖(首选`charset-normalizer`) 2. 重构项目目录结构,确保包含`__init__.py` 3. 使用模块化运行命令(`python -m package.module`) 4. 升级所有相关库: ```bash pip install --upgrade langchain requests chardet ``` > **注意**:如果问题出现在LangChain库内部,建议检查其GitHub Issue列表或提交新Issue。该库2023年仍有类似导入问题报告[^1]。 --- ### 相关问题 1. 如何在PyCharm中正确配置Python包结构避免相对导入错误? 2. LangChain构建向量数据库时还有哪些常见依赖冲突? 3. 使用`python -m`和直接执行`.py`文件有何本质区别? 4. 如何永久设置Python的模块搜索路径避免`sys.path`临时修改? [^1]: LangChain GitHub仓库显示该错误可能与动态导入机制有关(https://github.com/langchain-ai/langchain/issues/15763)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值