Matlab 基于NRBO-BP+NSGAII多目标优化算法的工艺参数优化【三目标】

目录

1、代码简介

2、代码运行结果展示

3、代码获取


1、代码简介

基于牛顿拉夫逊算法优化BP神经网络NRBO-BP+NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。【三目标】

代码简介:

1、先经NRBO-BP封装因变量(y1,y2,y3)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3极小),并生成对应的x1,x2,x3,x4,x5Pareto解集

2、数据集有5个输入特征,3个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min)对应的自变量的解集。

3、代码分别为两个主程序,先运行mian1进行NRBO-BP多输出回归,再运行main2进行NSGAII多目标算法优化即可。

4、牛顿-拉夫逊优化算法Newton-Raphson-based optimizer,NRBO,受到Newton-Raphson方法的启发。它使用两个规则来探索整个搜索过程:Newton-Raphson搜索规则(NRSR)和陷阱避免算子(TAO),并使用几组矩阵来进一步探索最佳结果。该成果于2024年2月发表在中科院2区top SCI期刊(赠送原算法文献)

以下每个输出都有对应的四张图:预测值和真实值拟合图、误差值直方图、回归拟合图、线性拟合图

注:

1️⃣、运行环境要求MATLAB版本为2018b及其以上

2️⃣、评价指标包括:R2、MAE、MBE、MAPE、RMSE等,图很多,符合您的需要

3️⃣、代码中文注释清晰,质量极高

4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白

2、代码运行结果展示

3、代码获取

点击下方了解更多!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值