目录
1、代码简介
基于牛顿拉夫逊算法优化BP神经网络NRBO-BP+NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。【三目标】
代码简介:
1、先经NRBO-BP封装因变量(y1,y2,y3)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。
2、数据集有5个输入特征,3个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min)对应的自变量的解集。
3、代码分别为两个主程序,先运行mian1进行NRBO-BP多输出回归,再运行main2进行NSGAII多目标算法优化即可。
4、牛顿-拉夫逊优化算法Newton-Raphson-based optimizer,NRBO,受到Newton-Raphson方法的启发。它使用两个规则来探索整个搜索过程:Newton-Raphson搜索规则(NRSR)和陷阱避免算子(TAO),并使用几组矩阵来进一步探索最佳结果。该成果于2024年2月发表在中科院2区top SCI期刊(赠送原算法文献)
以下每个输出都有对应的四张图:预测值和真实值拟合图、误差值直方图、回归拟合图、线性拟合图
注:
1️⃣、运行环境要求MATLAB版本为2018b及其以上
2️⃣、评价指标包括:R2、MAE、MBE、MAPE、RMSE等,图很多,符合您的需要
3️⃣、代码中文注释清晰,质量极高
4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白
2、代码运行结果展示
3、代码获取
点击下方了解更多!