问题
有2n+1个数,其中2n个数两两成对,1个数落单,找出这个数。要求O(n)的时间复杂度,O(1)的空间复杂度。
进阶问题:如果有2n+2个数,其中有2个数落单,该怎么办?
解答
初阶:将2n+1个数异或起来,相同的数会抵消,异或的答案就是要找的数。
#include <stdio.h>
#define N ( 21 )
int main()
{
int arr[N] = {1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,10};
int i,ret = 0;
for(i = 0; i < N; i++)
ret ^= arr[i];
printf("%d", ret);
}
进阶:假设两个不同的数是a和b,并且a!=b,将2n+2个数异或起来就会得到c=a xor b,并且c不等于0。因此在c的二进制位中找到一个为1的位,可推断在这位上a和b分别为0和1,因此将2n+2个数分为该位位0的组和该位为1的组,两组中各自会包含2n’+1个数和2n’’+1个数,用初阶的算法即可解决。
#include <stdio.h>
#define N ( 22 )
int main()
{
int arr[N] = {1,2,3,4,5,6,7,8,9,0,11,1,2,3,4,5,6,7,8,9,0,10};
int arr1[N],arr2[N];
int i,index,a = 0,b = 0,c = 0,n1 = 0,n2 = 0;
for(i = 0; i < N; i++)
c ^= arr[i];
for (i = 0; i < sizeof(c); i++,c >>= 1)
if(c & 1)
{
index = i;
break;
}
for (i = 0; i < N; i++)
{
if((arr[i] >> index) & 1)
arr1[n1++] = arr[i];
else
arr2[n2++] = arr[i];
}
for(i = 0; i < n1; i++)
a ^= arr1[i];
for(i = 0; i < n2; i++)
b ^= arr2[i];
printf("%d %d\n", a, b);
}
分析
该问题的考点,在于异或符号的运用。异或运算是计算机系的基础知识。上过课的同学一般来会答得上第一问。第二问会不会被问到看面试官心情。一般来说,对于一个问题的扩展问题,解题的思路是如何将它通过一定的变换转换为初级问题。因此就要去想怎么分为两组,两组各包含2x+1个数就问题得解。会初阶问题以后,基本上会想到把所有数异或起来,得到a xor b。再根据题目中的题目a与b不同,意味着该值不为0,从而想到根据该值的二进制位为1的位来将2n+2个数分为两组。