The balance was the first mass measuring instrument invented. In its traditional form, it consists of a pivoted horizontal lever of equal length arms, called the beam, with a weighing pan, also called scale, suspended from each arm (which is the origin of the originally plural term "scales" for a weighing instrument). The unknown mass is placed in one pan, and standard masses are added to this or the other pan until the beam is as close to equilibrium as possible. The standard weights used with balances are usually labeled in mass units, which are positive integers.
With some standard weights, we can measure several special masses object exactly, whose weight are also positive integers in mass units. For example, with two standard weights 1 and 5, we can measure the object with mass 1, 4, 5 or 6 exactly.
In the beginning of this problem, there are 2 standard weights, which masses are x and y. You have to choose a standard weight to break it into 2 parts, whose weights are also positive integers in mass units. We assume that there is no mass lost. For example, the origin standard weights are 4 and 9, if you break the second one into 4 and 5, you could measure 7 special masses, which are 1, 3, 4, 5, 8, 9, 13. While if you break the first one into 1 and 3, you could measure 13 special masses, which are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13! Your task is to find out the maximum number of possible special masses.
There are multiple test cases. The first line of input is an integer T < 500 indicating the number of test cases. Each test case contains 2 integers x and y. 2 ≤ x, y ≤ 100
For each test case, output the maximum number of possible special masses.
2 4 9 10 10
13 9
题意:
有一架天平,你有两个砝码,你可以将一个砝码分成两部分,题目问可以用这些砝码测量出多少种不同的质量
砝码可以放在天平的一端,也可以两端都放
题解:
设两个砝码质量分别为a,b,将a分为p,q两部分,有如下两种情况:
1.砝码都放在天平一端
待测物体质量=天平一侧砝码质量之和
2,砝码放在天平两端
待测物体质量=天平两端质量之差的绝对值
那么,待测物体质量只能为(以下式子均取绝对值):p,q,b,p+q,p-q,p+b,p-b,q+b,q-b,p+q+b,p+q-b,p-q+b,p-q-b
#include<cstdio>
#include<cstdlib>
#include<set>
#include<algorithm>
using namespace std;
int solve(int a,int b)
{
int ans=0;
set<int> s;
for(int i=1;i<=a/2;i++)
{
s.clear();
int p=i,q=a-i,size;
s.insert(abs(p));
s.insert(abs(q));
s.insert(abs(b));
s.insert(abs(p+q));
if(p-q)
s.insert(abs(p-q));
s.insert(abs(p+b));
if(p-b)
s.insert(abs(p-b));
s.insert(abs(q+b));
if(q-b)
s.insert(abs(q-b));
s.insert(abs(p+q+b));
if(p+q-b)
s.insert(abs(p+q-b));
if(p-q+b)
s.insert(abs(p-q+b));
if(p-q-b)
s.insert(abs(p-q-b));
size=s.size();
ans=max(ans,size);
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int a,b,ans;
scanf("%d%d",&a,&b);
ans=solve(a,b);
if(a!=b)
ans=max(ans,solve(b,a));
printf("%d\n",ans);
}
return 0;
}