分布式图数据库查询与CSV表格列类型推断技术解析
在当今的数据处理领域,分布式图数据库查询和CSV表格列类型推断是两个重要的技术方向。分布式图数据库查询能够高效处理大规模图数据,而CSV表格列类型推断则有助于解决表格数据自动处理和集成的难题。本文将详细介绍这两项技术的原理、实验结果以及相关应用。
分布式图数据库查询
分布式图数据库查询采用分布式图探索方法,每个从节点具备两个关键索引:一是将类型映射到本地存储的对应顶点集合的索引;二是允许遍历远程服务器顶点的索引。所有从节点接收相同的查询计划并并行处理,每个步骤的结果是变量到数据库中顶点的映射集合。
以一个具体查询为例,假设用户为Vendor2,查询计划和数据库已知。初始探索点在服务器X和Y中搜索,通过检索所有Vendor类型的顶点并检查过滤器。服务器Y得到结果{m1 : {Xvendor →Vendor2}},服务器X结果为空,因此图遍历仅在Y上继续。处理完步骤sb2后,得到新的映射。部分映射需跨服务器处理,如m2被发送到服务器X继续遍历。处理过程中,会根据顶点权限级别和过滤器条件筛选结果。所有步骤处理完成后,各服务器执行聚合步骤,最后进行投影步骤,结果发送到主服务器。
为了评估分布式方法的性能,进行了实验研究,将其与集中式方法进行对比。集中式方法基于主从架构,主节点为每个角色关联子图,接收用户查询后向从节点发送计算视图的请求,负责收集结果、过滤不满足访问约束的数据并生成查询结果。
实验设置方面,两种方法均用Java实现,采用TCP/IP通信协议,使用Berkeley DB存储。实验在由1个主节点和2个从节点组成的虚拟集群上进行,数据库使用柏林基准填充,包含1,811,316个三元组。 </