动态规划-如何推导出状态转移方程?

本文介绍了动态规划的概念,解释了如何判断问题是否适合使用动态规划,并通过一个纸币凑数问题详细阐述了动态规划的解题思路,特别是状态转移方程的推导过程,最后提及了如何将动态规划的规律转化为源代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天学习了《程序员的数据基础课》中的动态规划小节。如果你觉得这个课程对你有启发,请通过 分享一个IT专属的数学课,让这个冬天不太冷 下方的链接购买,加我微信 somenzz,返你 12 元红包,降低你的学习成本。

什么是动态规划?

在递归的时候,我们可以通过不断地分解问题,将复杂的任务简化为最基本的小问题,比如基于递归实现的归并排序,排列,组合等。不过有时候,我们并不用处理所有可能的情况,只要找到满足条件的最优解就可以了,这种情况下,我们需要在各种可能的局部解中,找出那些可能达到最优的局部解,而放弃其他的局部解,这个寻找最优解的过程叫动态规划。

怎么判断一个问题是否可以由动态规划来解决。

首先,如果一个问题有多种可能,看上去需要排列或者组合的思想,但是最终求的只是最优解,如最大值,最小值,最短子串,最长子串等,可以试试使用动态规划。

其实,状态转移方程是个关键。你可以用状态转移表来帮助自己理解整个过程。如果能找到准确的转移方程,那么离最终的代码实现也就不远了 。

这里说下什么是状态转移方程:从上一个状态到下一个状态之间可能存在一些变化,以及基于这些变化的最终决策结果。我们把这样的表达式称为状态转移方程。所有的动态规划算法中,状态转移是关键。

来个例子吧。

假如有 2 块,3 块,7 块面额的纸币,如何使用最小的纸币数量来凑成 100 块。

一般会优先想到这样的方法:优先使用大面额的,不够的话再用次大面额的,直到凑成 100 块。100 除以 7 = 14 余数为 2 ,正好再用一张 2 的面额就可以了,也就是说最低 15 张。这属于贪心算法,今天先不讲。

动态规划的解题思路:
c(n) 表示凑成 n 元的最小纸币数量
c(100) = c(93 +7) = c(93)+1
c(100) = c(97 +3) = c(97)+1
c(100) = c(98 + 2) = c(98)+1

如果分析到这里,你可能会想到递归是一种解决思路,没错,但递归从大到小的分解其实保留了每一步的结果,并没有舍弃非最优解,效率并不高。

接下来就是找 c(93),c(97), c(98)哪个值最小,按照同样的方法,继续进行分解,直到 c(2) = 1,c(3) =1, c(4) = 2, c(5) = 2, c(6)=2, c(7)=1, c(8) = 3。这里可以推出状态转移方程:

其中,c[i] 表示总额为 i 的时候,所需要的最少钱币数,其中 j=1,2,3,…,n,表示 n 种面额的钱币,value[j] 表示第 j 种钱币的面额。c[i - values(j)] 表示选择第 j 种钱币的时候,上一步为止最少的钱币数。需要注意的是,i - value(j) 需要大于等于 0,而且 c[0] = 0。

然后,从小到大,我们可以先在草纸上自己演算下,并验证状态转移方程

接下来的事情就是将这种有规律的过程转化为源代码了,到这里其实已经没有难度了。

#encoding = utf-8

def count_dp(num):
    kinds = [2,3,7]
    ##循环使用tmp,降低内存占用
    tmp = [1,1,2,2,2,1,3]
    result = [[2],[3],[2,2],[2,3],[3,3],[7],[2,3,3]]
    if num <2:
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值