子数组之和的最大值

给定一个数组,查找这个数组的子数组的最大和

比如{-2,5,3,-6,4,-8,6}

输出最大和8


分析:假设已经找到一个子数组的最大和,这个子数组是从数组索引i到索引j。

可以用如下式子描述,cur_max = a[i , j]; 对于下一个数,也就是索引为j+1,这个最大和是否

将a[j+1]加入cur_max,需要考虑cur_max的值和a[j+1];

如果当前的cur_max小于0,说明a[j+1] > a[i, j] + a[j]; cur_max = a[j+1];说明此时最大值从索引j+1开始

如果当前的cur_max大于或者等于0,cur_max = cur_max + a[j+1]。

每一轮需要比较cur_max和记录的max值进行比较更新。

此算法的时间复杂度为O(N) 空间复杂度为O(1);


源码:

int MaxSum( const int* numbers, unsigned int N )
{
assert( numbers );

int max = numbers[0];
int cur_max = max;

for ( int i=1; i<N; i++ )
{
if( cur_max < 0 )
cur_max = 0;
cur_max += numbers[i];
if( cur_max > max )
max = cur_max;
}

return max;
}

void main()
{
int nums[] = {-2,5,3,-6,4,-8,6};
//int nums[] = {0,-2,3,5,-1,2};
cout << MaxSum( nums, sizeof(nums) / sizeof(int) ) << endl;
system("pause");
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值