题目描述
给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?
示例
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
思路
dp思路。dp四步曲:
(1)确定状态。设dp[n]为[1,2,...n] 所能构造二叉搜索树的个数。这里有n个数,则根节点可以为n种情况,确定了根结点后,只需要确定左子树和右子树分别可以有多少种情况。
假设n=4,即(1, 2, 3, 4)。则dp[4]即所求结果。n=4时,共有4种根节点情况。
(1)根节点为1, 则左子树为dp[0] ,右子树为dp[3],结果为dp[0] * dp[3]
(2)根节点为2,则左子树为dp[1],右子树为dp[2],结果为dp[1] * dp[2]
(3)根节点为3,则左子树为dp[2],右子树为dp[1],结果为dp[2] * dp[1]
(4)根节点为4,则左子树为dp[3] ,右子树为dp[0],结果为dp[3] * dp[0]
将上述4种情况的结果加起来即为dp[4]。
(2)初始条件
dp[0] = 1, dp[1] = 1。
(3)无边界条件
(4)计算顺序:n从小达到。
代码
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n+1, 1);
for (int i = 2; i <= n; ++i){
int res = 0;
for (int j = 1; j <= i; j++){
res += dp[i-j] * dp[j-1];
}
dp[i] = res;
}
return dp[n];
}
};