96. 不同的二叉搜索树

本文探讨了如何计算由1到n整数构成的不同二叉搜索树的数量,采用动态规划方法,通过递推公式计算dp数组,实现了高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

 

示例

 

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

 

思路

dp思路。dp四步曲:

(1)确定状态。设dp[n]为[1,2,...n] 所能构造二叉搜索树的个数。这里有n个数,则根节点可以为n种情况,确定了根结点后,只需要确定左子树和右子树分别可以有多少种情况。

       假设n=4,即(1, 2, 3, 4)。则dp[4]即所求结果。n=4时,共有4种根节点情况。

      (1)根节点为1, 则左子树为dp[0] ,右子树为dp[3],结果为dp[0] * dp[3]

      (2)根节点为2,则左子树为dp[1],右子树为dp[2],结果为dp[1] * dp[2]

      (3)根节点为3,则左子树为dp[2],右子树为dp[1],结果为dp[2] * dp[1]

      (4)根节点为4,则左子树为dp[3] ,右子树为dp[0],结果为dp[3] * dp[0]

将上述4种情况的结果加起来即为dp[4]。

(2)初始条件

dp[0] = 1, dp[1] = 1。

(3)无边界条件

(4)计算顺序:n从小达到。

    

代码

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n+1, 1);
        for (int i = 2; i <= n; ++i){
            int res = 0;
            for (int j = 1; j <= i; j++){
                res += dp[i-j] * dp[j-1];
            }
            dp[i] = res;
        }
        return dp[n];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值